×

zbMATH — the first resource for mathematics

Representations of finite groups of Lie type. (English) Zbl 0416.20002

MSC:
20C15 Ordinary representations and characters
20G05 Representation theory for linear algebraic groups
20G40 Linear algebraic groups over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. T. Benson, On the generic algebra of a unipotent, Comm. Algebra 5 (1977), no. 8, 841 – 862. · Zbl 0388.20006 · doi:10.1080/00927877708822198 · doi.org
[2] Clark T. Benson, The generic degrees of the irreducible characters of \?\(_{8}\), Comm. Algebra 7 (1979), no. 11, 1199 – 1209. · Zbl 0416.20040 · doi:10.1080/00927877908822397 · doi.org
[3] C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251 – 273. · Zbl 0246.20008
[4] Clark T. Benson, Larry C. Grove, and David B. Surowski, Semilinear automorphisms and dimension functions for certain characters of finite Chevalley groups, Math. Z. 144 (1975), no. 2, 149 – 159. · Zbl 0295.20014 · doi:10.1007/BF01190944 · doi.org
[5] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0186.33201
[6] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1 – 55. · Zbl 0793.01013
[7] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55 – 150 (French). · Zbl 0395.20024
[8] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95 – 104 (French). · Zbl 0238.20055 · doi:10.1007/BF01404653 · doi.org
[9] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[10] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1 – 59. · Zbl 0254.17005
[11] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28. · Zbl 0248.20015
[12] R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc. (3) 37 (1978), no. 3, 491 – 507. · Zbl 0408.20031 · doi:10.1112/plms/s3-37.3.491 · doi.org
[13] Bomshik Chang and Rimhak Ree, The characters of \?\(_{2}\)(\?), Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome,1972), Academic Press, London, 1974, pp. 395 – 413. · Zbl 0314.20034
[14] C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), 14 – 66 (French). · Zbl 0066.01503 · doi:10.2748/tmj/1178245104 · doi.org
[15] C. Chevalley, Classification des groupes de Lie algébriques, Paris, 1956/1958.
[16] Charles W. Curtis, The Steinberg character of a finite group with a (\?,\?)-pair, J. Algebra 4 (1966), 433 – 441. · Zbl 0161.02203 · doi:10.1016/0021-8693(66)90033-0 · doi.org
[17] Charles W. Curtis, On the values of certain irreducible characters of finite Chevalley groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 343 – 355.
[18] Charles W. Curtis, Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan 27 (1975), no. 4, 666 – 688. · Zbl 0382.20007 · doi:10.2969/jmsj/02740666 · doi.org
[19] Charles W. Curtis, A note on the connections between the generalized characters of Deligne and Lusztig and the cuspidal characters of reductive groups over finite fields, J. London Math. Soc. (2) 14 (1976), no. 3, 405 – 412. · Zbl 0389.20032 · doi:10.1112/jlms/s2-14.3.405 · doi.org
[20] Charles W. Curtis and Timothy V. Fossum, On centralizer rings and characters of representations of finite groups, Math. Z. 107 (1968), 402 – 406. · Zbl 0185.06801 · doi:10.1007/BF01110070 · doi.org
[21] C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (\?, \?)-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81 – 116. · Zbl 0254.20004
[22] Charles W. Curtis, William M. Kantor, and Gary M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1 – 59. · Zbl 0374.20002
[23] C. W. Curtis and G. I. Lehrer, The homology of certain fixed point sets in the Tits complex of a reductive group over a finite field (to appear).
[24] P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin-New York, 1977. Séminaire de Géométrie Algébrique du Bois-Marie SGA 41\over2; Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier.
[25] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103 – 161. · Zbl 0336.20029 · doi:10.2307/1971021 · doi.org
[26] Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958. · Zbl 0082.24901
[27] Jean Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). · Zbl 0067.26104
[28] Hikoe Enomoto, The characters of the finite Chevalley group \?\(_{2}\)(\?),\?=3^\?, Japan. J. Math. (N.S.) 2 (1976), no. 2, 191 – 248. · Zbl 0384.20007
[29] Paul Fong and Gary M. Seitz, Groups with a (\?,\?)-pair of rank 2. I, II, Invent. Math. 21 (1973), 1 – 57; ibid. 24 (1974), 191 – 239. · Zbl 0295.20048 · doi:10.1007/BF01389689 · doi.org
[30] J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83 – 119. · Zbl 0045.00505 · doi:10.1007/BF02417955 · doi.org
[31] J. S. Frame, The characters of the Weyl group \?\(_{8}\), Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 111 – 130.
[32] Howard Garland, \?-adic curvature and the cohomology of discrete subgroups of \?-adic groups, Ann. of Math. (2) 97 (1973), 375 – 423. · Zbl 0262.22010 · doi:10.2307/1970829 · doi.org
[33] S. I. Gel\(^{\prime}\)fand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15 – 41.
[34] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402 – 447. · Zbl 0068.25605
[35] James A. Green, On the Steinberg characters of finite Chevalley groups, Math. Z. 117 (1970), 272 – 288. · Zbl 0219.20003 · doi:10.1007/BF01109848 · doi.org
[36] A. Grothendieck, Groupes diagonalisables, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1964, pp. 36 (French).
[37] Harish-Chandra, Eisenstein series over finite fields, Functional analysis and related fields (Proc. Conf. M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 76 – 88. · Zbl 0226.20049
[38] P. Hoefsmit, Representations of Hecke algebras of finite groups with (B, N)-pairs of classical type, Ph.D. dissertation, Univ. of British Columbia, Vancouver, 1974.
[39] Robert B. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1973/74), 125 – 135. · Zbl 0261.20033 · doi:10.1007/BF01189349 · doi.org
[40] Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215 – 236 (1964). · Zbl 0135.07101
[41] Noriaki Kawanaka, A theorem on finite Chevalley groups, Osaka J. Math. 10 (1973), 1 – 13. · Zbl 0277.20063
[42] Noriaki Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka J. Math. 12 (1975), no. 2, 523 – 554. · Zbl 0314.20031
[43] D. Kazhdan, On \?-representations, Israel J. Math. 43 (1982), no. 4, 315 – 323. · Zbl 0518.22008 · doi:10.1007/BF02761236 · doi.org
[44] R. Kilmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. dissertation, M.I.T., 1969.
[45] Robert W. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra 51 (1978), no. 1, 300 – 319. · Zbl 0389.20008 · doi:10.1016/0021-8693(78)90149-7 · doi.org
[46] Takeshi Kondo, The characters of the Weyl group of type \?\(_{4}\), J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 145 – 153 (1965). · Zbl 0132.27401
[47] Bertram Kostant, Groups over \?, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 90 – 98. · Zbl 0199.06903
[48] G. I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 249 – 260. · Zbl 0345.20047
[49] George Lusztig, The discrete series of \?\?_\? over a finite field, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 81. · Zbl 0293.20038
[50] G. Lusztig, On the Green polynomials of classical groups, Proc. London Math. Soc. (3) 33 (1976), no. 3, 443 – 475. · Zbl 0371.20037 · doi:10.1112/plms/s3-33.3.443 · doi.org
[51] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101 – 159. · Zbl 0366.20031 · doi:10.1007/BF01408569 · doi.org
[52] G. Lusztig, On the finiteness of the number of unipotent classes, Invent. Math. 34 (1976), no. 3, 201 – 213. · Zbl 0371.20039 · doi:10.1007/BF01403067 · doi.org
[53] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125 – 175. · Zbl 0372.20033 · doi:10.1007/BF01390002 · doi.org
[54] G. Lusztig, Unipotent representations of a finite Chevalley group of type E8 (to appear). · Zbl 0418.20038
[55] G. Lusztig, On the reflection representation of a finite Chevalley group (to appear). · Zbl 0426.20034
[56] George Lusztig, Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics, vol. 39, American Mathematical Society, Providence, R.I., 1978. Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8 – 12, 1977. · Zbl 0418.20037
[57] George Lusztig and Bhama Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), no. 1, 167 – 171. · Zbl 0384.20008 · doi:10.1016/0021-8693(77)90277-0 · doi.org
[58] Hideya Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419 – 3422 (French). · Zbl 0128.25202
[59] Forrest Richen, Modular representations of split \?\? pairs, Trans. Amer. Math. Soc. 140 (1969), 435 – 460. · Zbl 0181.03801
[60] Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27 – 56. · Zbl 0338.20052 · doi:10.2307/1970876 · doi.org
[61] Louis Solomon, The Steinberg character of a finite group with \?\?-pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 213 – 221.
[62] Louis Solomon, On the affine group over a finite field, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 145 – 147.
[63] Louis Solomon, The affine group. I. Bruhat decomposition, J. Algebra 20 (1972), 512 – 539. · Zbl 0251.20006 · doi:10.1016/0021-8693(72)90071-3 · doi.org
[64] T. A. Springer, Cusp forms for finite groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 97 – 120.
[65] T. A. Springer, On the characters of certain finite groups, Proc. Summer School, Group Representations, Budapest, 1971. · Zbl 0347.20024
[66] T. A. Springer, Caractères de groupes de Chevalley finis, Sem. Bourbaki, no. 429, 1972/73.
[67] T. A. Springer, Relèvement de Brauer et représentations paraboliques de GL(F), Sem. Bourbaki, no. 441, 1973/74.
[68] T. A. Springer, Generalization of Green’s polynomials, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 149 – 153.
[69] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173 – 207. · Zbl 0374.20054 · doi:10.1007/BF01390009 · doi.org
[70] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167 – 266. · Zbl 0249.20024
[71] Bhama Srinivasan, The characters of the finite symplectic group \?\?(4,\?), Trans. Amer. Math. Soc. 131 (1968), 488 – 525. · Zbl 0213.30401
[72] Bhama Srinivasan, On the Steinberg character of a finite simple group of Lie type, J. Austral. Math. Soc. 12 (1971), 1 – 14. · Zbl 0213.30305
[73] Bhama Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241 – 1258. · Zbl 0406.14032 · doi:10.1080/00927877708822217 · doi.org
[74] R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274 – 282. · Zbl 0045.30201
[75] Robert Steinberg, Prime power representations of finite linear groups. II, Canad. J. Math. 9 (1957), 347 – 351. · Zbl 0079.25601 · doi:10.4153/CJM-1957-041-1 · doi.org
[76] B. Srinivasan, Lectures on Chevalley groups, Yale University, 1967.
[77] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. · Zbl 0164.02902
[78] D. Surowski, Irreducible characters of BN-pairs of exceptional type, Ph.D. dissertation, Univ. of Arizona, 1975.
[79] David B. Surowski, Representations of a subalgebra of the generic algebra corresponding to the Weyl group of type \?\(_{4}\), Comm. Algebra 5 (1977), no. 8, 873 – 888. · Zbl 0362.20004 · doi:10.1080/00927877708822200 · doi.org
[80] David B. Surowski, Degrees of irreducible characters of (\?,\?)-pairs of types \?\(_{6}\) and \?\(_{7}\), Trans. Amer. Math. Soc. 243 (1978), 235 – 249. · Zbl 0392.20009
[81] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. · Zbl 0295.20047
[82] André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497 – 508. · Zbl 0032.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.