×

zbMATH — the first resource for mathematics

Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups. (English) Zbl 0416.22008

MSC:
22D45 Automorphism groups of locally compact groups
22D35 Duality theorems for locally compact groups
43A40 Character groups and dual objects
22A99 Topological and differentiable algebraic systems
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Chilana, A. K., andK. A. Ross: Spectral synthesis in hypergroups. Pacific J. Math.76, 313-328 (1978). · Zbl 0351.43009
[2] Dunkl, C. F.: The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc.179, 331-348 (1973). · Zbl 0241.43003 · doi:10.1090/S0002-9947-1973-0320635-2
[3] Fell, J. M. G.: Weak containment and induced representations of groups II. Trans. Amer. Math. Soc.110, 424-447 (1964). · Zbl 0195.42201
[4] Greenleaf, F. P.: Amenable actions of locally compact groups. J. Funct. Anal.4, 295-315 (1969). · Zbl 0195.42301 · doi:10.1016/0022-1236(69)90016-0
[5] Grosser, S., andM. Moskowitz: On central topological groups. Trans. Amer. Math. Soc.127, 317-340 (1969). · Zbl 0145.03305 · doi:10.1090/S0002-9947-1967-0209394-9
[6] Grosser, S., andM. Moskowitz: Compactness conditions in topological groups. J. Reine Angew. Math.246, 1-40 (1971). · Zbl 0219.22011 · doi:10.1515/crll.1971.246.1
[7] Henrichs, R. W.: Über Fortsetzung positiv definiter Funktionen. Math. Ann.232, 131-150 (1978). · Zbl 0361.43005 · doi:10.1007/BF01421401
[8] Henrichs, R. W.: Weak Frobenius reciprocity and compactness conditions in topological groups. Pacific J. Math. (To appear.) · Zbl 0387.22004
[9] Jewett, R. I.: Spaces with an abstract convolution of measures. Adv. Math.18, 1-101 (1975). · Zbl 0325.42017 · doi:10.1016/0001-8708(75)90002-X
[10] Kaniuth, E.: Zur harmonischen Analyse klassenkompakter Gruppen. Math. Z.110, 297-305 (1969). · Zbl 0176.11601 · doi:10.1007/BF01110324
[11] Kaniuth, E., andG. Schlichting: Zur harmonischen Analyse klassenkompakter Gruppen II. Inventiones math.10, 332-345 (1970). · Zbl 0198.47703 · doi:10.1007/BF01418779
[12] Kaniuth, E., andD. Steiner: On complete regularity of group algebras. Math. Ann.204, 305-329 (1973). · Zbl 0252.46056 · doi:10.1007/BF01354580
[13] Liukkonen, J., andR. Mosak: Harmonic analysis and centers of group algebras. Trans. Amer. Math. Soc.195, 147-163 (1974). · Zbl 0292.22010 · doi:10.1090/S0002-9947-1974-0350322-7
[14] Michael, E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc.71, 152-182 (1951). · Zbl 0043.37902 · doi:10.1090/S0002-9947-1951-0042109-4
[15] Mosak, R.: TheL 1- andC *-algebras of[FIA] B ? groups and their representations. Trans. Amer. Math. Soc.163, 277-310 (1972). · Zbl 0213.13601
[16] Ross, K. A.: Centers of hypergroups. Trans. Amer. Math. Soc.243, 251-269 (1978). · Zbl 0349.43002 · doi:10.1090/S0002-9947-1978-0493161-2
[17] Spector, R.: Aperçu de la théorie des hypergroupes. Lecture Notes Math. 497 (Analyse Harmonique sur les Groupes de Lie, Sem. Nancy-Strasbourg 1973-1975). Berlin-Heidelberg-New York: Springer. 1975.
[18] Steiner, D.: Zur harmonischen Analyse von klassenkompakten Gruppen. Dissertation. Technische Universität München. 1973.
[19] Thoma, E.: Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann.153, 111-138 (1964). · Zbl 0136.11603 · doi:10.1007/BF01361180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.