×

zbMATH — the first resource for mathematics

Intersections de langages algébriques bornes. (French) Zbl 0416.68064

MSC:
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Book, R., Nivat, M., Paterson, M.: Intersections of linear context-free languages and reversalbounded multipushdown machines, Procedings of sixth annual ACM Symposium on theory of Computing 290-296 (1974) · Zbl 0361.68105
[2] Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state machines, I.E.E.E. Transactions on Computer vol. C-18, 4, 349-365 (1969) · Zbl 0172.20804
[3] Cole, S.N.: Deterministic pushdown store machines and real-time computation, J.A.C.M. 18, 306-328 (1971) · Zbl 0274.68013
[4] Eilenberg, S.: Automata, languages and machines, Vol. A, New-York: Academic Press 1974 · Zbl 0317.94045
[5] Ginsburg, S.: The mathematical theory of context-free languages, New York: McGraw-Hill 1966 · Zbl 0184.28401
[6] Ginsburg, S., Greibach, S.: Deterministic context-free languages, Information and Control 9, 620-648 (1966) · Zbl 0145.00802
[7] Ginsburg, S., Spanier, E.M.: AFL with the semilinear property, J. Comp. Syst. Sc. 5, 365-396 (1971) · Zbl 0235.68029
[8] Latteux, M.: Sur les semilinéaires-langages bornés, Publication du Laboratoire de Calcul de l’Université de Lille I, n? 60 (1975)
[9] Latteux, M.: Cônes rationnels commutativement clos, R.A.I. R.O. Informatique théorique 11, 29-51 (1977) · Zbl 0354.68103
[10] Liu, L.Y., Weiner, P.: A characterization of semilinear sets, J. Comp. Syst. Sc. 4, 299-307 (1970) · Zbl 0231.68025
[11] Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free languages. Math. Systems theory 7, 185-192 (1973) · Zbl 0257.68077
[12] Wotschke, D.: Nondeterminism and Boolean operations in pda’s, J. Comp. Syst. Sc. 16, 456-461 (1978) · Zbl 0376.68052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.