×

zbMATH — the first resource for mathematics

Partially conservative extensions of arithmetic. (English) Zbl 0417.03030

MSC:
03F30 First-order arithmetic and fragments
03C65 Models of other mathematical theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jon Barwise, Admissible sets and structures, Springer-Verlag, Berlin-New York, 1975. An approach to definability theory; Perspectives in Mathematical Logic. · Zbl 0316.02047
[2] Jon Barwise, Infinitary methods in the model theory of set theory, Logic Colloquium ’69 (Proc. Summer School and Colloq., Manchester, 1969), North-Holland, Amsterdam, 1971, pp. 53 – 66.
[3] Marie Hájková and Petr Hájek, On interpretability in theories containing arithmetic, Fund. Math. 76 (1972), no. 2, 131 – 137. · Zbl 0262.02049
[4] Petr Hájek, On interpretability in set theories, Comment. Math. Univ. Carolinae 12 (1971), 73 – 79. · Zbl 0231.02087
[5] Petr Hájek, On interpretability in set theories. II, Comment. Math. Univ. Carolinae 13 (1972), 445 – 455. · Zbl 0251.02064
[6] S. Feferman, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960/1961), 35 – 92. · Zbl 0095.24301
[7] Harvey Friedman, Countable models of set theories, Cambridge Summer School in Mathematical Logic (Cambridge, 1971) Springer, Berlin, 1973, pp. 539 – 573. Lecture Notes in Math., Vol. 337.
[8] Model theory for infinitary logic, North Holland, Amsterdam, 1971.
[9] G. Kreisel, On weak completeness of intuitionistic predicate logic, J. Symbolic Logic 27 (1962), 139 – 158. · Zbl 0117.01005 · doi:10.2307/2964110 · doi.org
[10] J. L. Krivine and K. McAloon, Some true unprovable formulas for set theory, The Proceedings of the Bertrand Russell Memorial Conference (Uldum, 1971), Bertrand Russell Memorial Logic Conf., Leeds, 1973, pp. 332 – 341.
[11] Azriel Lévy, A hierarchy of formulas in set theory, Mem. Amer. Math. Soc. No. 57 (1965), 76.
[12] M. H. Löb, Solution of a problem of Leon Henkin, J. Symb. Logic 20 (1955), 115 – 118. · Zbl 0067.00202
[13] A. Macintyre and H. Simmons, Gödel’s diagonalization technique and related properties of theories, Colloq. Math. 28 (1973), 165 – 180. · Zbl 0288.02018
[14] Yu. V. Matijasevič, Diophantine representation of recursively enumerable predicates, Proceedings of the Second Scandinavian Logic Symposium (Univ. Oslo, Oslo, 1970) Studies in Logic and the Foundations of Mathematics, Vol. 63, North-Holland, Amsterdam, 1971, pp. 171 – 177.
[15] Semantical closure and nonfinite axiomatizability, in Infinitistic Methods, Pergamon Press, New York, 1959, pp. 45-69.
[16] Joseph R. Shoenfield, Mathematical logic, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. · Zbl 0155.01102
[17] On interpretability in set theories (to appear). · Zbl 0231.02087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.