Besson, Gérard Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes. (French) Zbl 0417.30033 Ann. Inst. Fourier 30, No. 1, 109-128 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 23 Documents MSC: 30F10 Compact Riemann surfaces and uniformization Keywords:compact Riemann surface; eigenvalues PDF BibTeX XML Cite \textit{G. Besson}, Ann. Inst. Fourier 30, No. 1, 109--128 (1980; Zbl 0417.30033) Full Text: DOI Numdam EuDML OpenURL References: [1] S. AGMON, Lectures on elliptic boundary value problems, Van Nostrand, 1965. · Zbl 0142.37401 [2] N. ARONSZAJN, A unique continuation theorem for solution of elliptic partial differential equations or inequalities of second order, J. Math. Pure. Appl., 36 (1957), 235-249. · Zbl 0084.30402 [3] P. BERARD, Sur un lemme de perturbation, à paraître. [4] M. BERGER, P. GAUDUCHON, E. MAZET, Le spectre d’une variété riemannienne, Lectures notes n° 194, Springer. · Zbl 0223.53034 [5] L. BERS, Local behaviour of solution of general linear elliptic equations, Comm. Pure. Appl. Math., 8 (1955), 473-476. · Zbl 0066.08101 [6] J.P. BOURGUIGNON, Stratification de l’espace des métriques, Compositio Math., 30 (1975), 1-40. · Zbl 0301.58015 [7] M. BURROW, Representation theory of finite groups, 1966, Academic Press. · Zbl 0192.12303 [8] S.Y. CHENG, Eigenfunctions and nodal sets, Commentarii Math. Helv., 51 (1976), 43-55. · Zbl 0334.35022 [9] R. COURANT et G. HILBERT, Methods of mathematical physics, Vol. 1, interscience. · Zbl 0121.07801 [10] J. DIEUDONNE, Foundations of modern analysis, Academic Press, 1962. · Zbl 0122.29702 [11] M. GREENBERG, Lectures on algebraic topology, Benjamin, 1967. · Zbl 0169.54403 [12] H. URAKAWA, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31 (1979), 209-226. · Zbl 0402.58012 [13] VALIRON, Théorie des fonctions, 1942, Masson. · JFM 68.0099.03 [14] J. WOLF, Spaces of constant curvature, Publish or perish (1974). · Zbl 0281.53034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.