×

zbMATH — the first resource for mathematics

On the eigenvalues of a class of hypoelliptic operators. IV. (English) Zbl 0417.47024

MSC:
47Gxx Integral, integro-differential, and pseudodifferential operators
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
35S05 Pseudodifferential operators as generalizations of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] L. HÖRMANDER, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann., 217 (1975), 165-188. · Zbl 0306.35032
[2] J. KARAMATA, Neuer beweis und verallgemeinerung der tauberschen Sätze etc., J. Reine u. Angew. Math., 164 (1931), 27-39. · JFM 57.0262.01
[3] A. MELIN, Lower bounds for pseudo-differential operators, Ark. f. Math., 9 (1971), 117-140. · Zbl 0211.17102
[4] A. MELIN and J. SJÖSTRAND, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. P.D.E., 1 (1976), 313-400. · Zbl 0364.35049
[5] A. MELIN and J. SJÖSTRAND, A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem, Comm. P.D.E., 2 (1977), 857-935. · Zbl 0392.35055
[6] A. MENIKOFF and J. SJÖSTRAND, On the eigenvalues of a class of hypoelliptic operators, Math. Ann., 235 (1978), 55-85. · Zbl 0375.35014
[7] A. MENIKOFF and J. SJÖSTRAND, On the eigenvalues of a class of hypoelliptic operators II, Springer L. N., n°755, 201-247. · Zbl 0444.35019
[8] A. MENIKOFF and J. SJÖSTRAND, The eigenvalues of hypoelliptic operators, III, the non semibounded case, Journal d’Analyse Math., 35 (1979), 123-150. · Zbl 0436.35065
[9] J. SJÖSTRAND, Eigenvalues for hypoelliptic operators and related methods, Proc. Inter. Congress of Math., Helsinki, 1978, 445-447.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.