×

zbMATH — the first resource for mathematics

Horocycle flows are loosely Bernoulli. (English) Zbl 0417.58013

MSC:
37D99 Dynamical systems with hyperbolic behavior
37A99 Ergodic theory
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. V. Anosov and Ya. G. Sinai,Some smooth ergodic systems, Russian Math. Surveys22 (1967), 103–167. · Zbl 0177.42002 · doi:10.1070/RM1967v022n05ABEH001228
[2] L. Auslander, L. Green and F. Hahn,Flows on Homogeneous Spaces, Princeton Univ. Press, 1963. · Zbl 0106.36802
[3] R. Bowen,Markov partitions for Axiom A diffeomorphisms, Amer. J. Math.92 (1970), 725–747. · Zbl 0208.25901 · doi:10.2307/2373370
[4] R. Bowen,Symbolic dynamics for hyperbolic flows, Amer. J. Math.95 (1973), 429–460. · Zbl 0282.58009 · doi:10.2307/2373793
[5] R. Bowen,On Axiom A Diffeomorphisms, CBMS Regional Conference at Fargo, Lecture Notes, 1978.
[6] R. Bowen and B. Marcus,Unique ergodicity of horocycle foliations, Israel J. Math.26 (1977), 43–67. · Zbl 0346.58009 · doi:10.1007/BF03007655
[7] A. V. Coĉergin,On additive homological equations over dynamical systems, IV International Conference on Information Theory, Moscow-Leningrad, 1976.
[8] J. Feldman,Non-Bernoulli K-automorphisms and a problem of Kakutani, Israel J. Math.24 (1976), 16–37. · Zbl 0336.28003 · doi:10.1007/BF02761426
[9] H. Furstenberg,The unique ergodicity of the horocycle flow, inRecent Advances in Topological Dynamics, Springer-Verlag Lecture Notes318, 1974, pp. 95–114.
[10] I. Gelfand and S. Fomin,Geodesic flows on manifolds of constant negative curvature, Uspehi Mat. Nauk7: 1 (1952), 118–137 (Amer. Math. Soc. Transl. (2)1 (1955), 49–65).
[11] E. Hopf,Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümung, Ber. Voch. Sachs. Akad. Wiss. Leipzig91 (1939), 261–304. · JFM 65.1413.02
[12] S. Kakutani,Induced measure-preserving transformations, Proc. Imp. Acad. Tokyo19 (1943), 635–641. · Zbl 0060.27406 · doi:10.3792/pia/1195573248
[13] A. B. Katok,Change of time, monotone equivalence and standard dynamical systems, Dokl. Akad. Nauk SSSR223 (1975), 789–792. · Zbl 0326.28025
[14] A. B. Katok and E. A. Sataev,Interval exchange transformations and flows on surfaces are standard, Mat. Zametki20:4 (1976), 479–488.
[15] A. G. Kushnirenko,Metric invariants of entropy type, Russian Math. Surveys22 (1967), 53–61. · Zbl 0169.46101 · doi:10.1070/RM1967v022n05ABEH001225
[16] B. Marcus,Unique ergodicity of some flows related to Axiom A diffeomorphisms, Israel J. Math.21 (1975), 111–132. · Zbl 0314.58012 · doi:10.1007/BF02760790
[17] B. Marcus,Unique ergodicity of the horocycle flow: variable negative curvature case, Israel J. Math.21 (1975), 133–144. · Zbl 0314.58013 · doi:10.1007/BF02760791
[18] B. Marcus,The horocycle flow is mixing of all degrees, to appear. · Zbl 0395.28012
[19] G. A. Margulis,Certain measures associated with U-flows on compact manifolds, Functional Anal. Appl.4 (1970), 55–67. · Zbl 0245.58003 · doi:10.1007/BF01075620
[20] C. C. Moore,Ergodicity of flows on homogeneous spaces, Amer. J. Math.88 (1966), 154–177. · Zbl 0148.37902 · doi:10.2307/2373052
[21] D. Ornstein,Orbit structure of flows, inConf. on Dynamical Systems and Ergodic Theory, Warsaw, 1977.
[22] D. Ornstein and M. Smorodinsky,Ergodic flows of positive entropy can be time changes to become K-flows, Israel J. Math.26 (1977), 75–83. · Zbl 0346.28011 · doi:10.1007/BF03007657
[23] D. Ornstein and M. Smorodinsky,Representing a measurable flow as a flow with a derivative, to appear.
[24] O. Parasuk,Horocycle flows on surfaces of constant negative curvature, Russian Math. Surveys8 (1953), 125–126.
[25] M. Ratner,Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math.15 (1973), 92–114. · Zbl 0269.58010 · doi:10.1007/BF02771776
[26] D. Rudolph,Classifying the isometric extensions of a Bernoulli shift, to appear. · Zbl 0415.28012
[27] D. Rudolph,Non-equivalence of measure-preserving transformations, to appear. · Zbl 0504.28019
[28] Ya. G. Sinai,Probabilistic ideas in ergodic theory, International Cong. Math., Stockholm, 1962, pp. 540–559 (Amer. Math. Soc. Transl. (2)31 (1963), 62–81).
[29] Ya. G. Sinai,Markov partitions and C-diffeomorphisms, Functional Anal. Appl.2 (1968), 64–89. · Zbl 0182.55003 · doi:10.1007/BF01075361
[30] B. Weiss,Equivalence of measure preserving transformations, Lecture Notes, The Institute for Advanced Studies, The Hebrew University of Jerusalem, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.