×

Generalized Markovian decision processes. (English) Zbl 0417.90087

MSC:

90C47 Minimax problems in mathematical programming
41A25 Rate of convergence, degree of approximation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aggarwal, V., R. Chandrasekaran, andK.P.K. Nair: Markov Ratio Decision Processes. Journal of Optimization Theory and Applications21, 1977, 27–37. · Zbl 0326.90064 · doi:10.1007/BF00932541
[2] Blackwell, D.: Discounted Dynamic Programming. Ann. Math. Statist.36, 1965, 226–235. · Zbl 0133.42805 · doi:10.1214/aoms/1177700285
[3] Charnes, A., andW. Cooper: Programming with Linear Fractional Functions. Naval Res. Log. Quart.9, 1962, 181–186. · Zbl 0127.36901 · doi:10.1002/nav.3800090303
[4] Dantzig, G.B.: Linear Programming and Extensions. Princeton, N.J., 1963. · Zbl 0108.33103
[5] DeCani, J.: A Dynamic Programming Algorithm for Imbedded Markov Chains When the Planning Horizon is at Infinity. Mgmt. Sci.10, 1964, 716–733. · Zbl 0995.90622 · doi:10.1287/mnsc.10.4.716
[6] Denardo, E.: On Linear Programming in a Markov Decision Problem. Mgmt. Sci.16, 1970a, 281–288. · Zbl 0191.48602 · doi:10.1287/mnsc.16.5.281
[7] –: Computing a Bias-Optimal Policy in Discrete-Time Markov Decision Problems. Operations Research18, 1970b, 279–289. · Zbl 0195.21101 · doi:10.1287/opre.18.2.279
[8] –: Markov Renewal Programs with Small Interest Rates. Ann. Math. Statist.42, 1971, 477–496. · Zbl 0234.60106 · doi:10.1214/aoms/1177693399
[9] Denardo, E. V., andB.L. Fox: Multichain Markov Renewal Programs. SIAM J. Appl. Math.16, 1968, 468–487. · Zbl 0201.19303 · doi:10.1137/0116038
[10] Derman, C.: Finite State Markovian Decision Processes. New York 1970. · Zbl 0262.90001
[11] Fox, B.: (g, w)-optima in Markov Renewal Programming. Mgmt. Sci.15, 1968, 210–212. · doi:10.1287/mnsc.15.3.210
[12] Fox, B.L.: Markov Renewal Programming by Linear Fractional Programming. SIAM J. Appl. Math.14, 1966, 1418–1422. · Zbl 0154.45003 · doi:10.1137/0114110
[13] Howard, R.: Dynamic Programming and Markov Processes. New York 1960. · Zbl 0091.16001
[14] –: Semi-Markovian Decision Processes. Bull. International Statistics Inst.40, Part 2, 1963, 625–652. · Zbl 0128.12804
[15] Jewell, W.: Markov Renewal Programming I and II. Operations Research11, 1963, 938–971. · Zbl 0126.15905 · doi:10.1287/opre.11.6.938
[16] Manne, A.: Linear Programming and Sequential Decision Models. Mgmt. Sci.6, 1960, 259–267. · Zbl 0995.90599 · doi:10.1287/mnsc.6.3.259
[17] Mine, H., andY. Tabata: Linear Programming and Continuous Markovian Decision Problems. J. Appl. Prob.7, 1970, 657–666. · Zbl 0204.51702 · doi:10.2307/3211945
[18] Osaki, S., andH. Mine: Linear Programming Algorithms for Semi-Markovian Decision Processes. J. Math. Anal. Appl.22, 1968, 356–381. · Zbl 0182.53203 · doi:10.1016/0022-247X(68)90178-9
[19] –: Linear Programming Considerations on Markovian Decision Processes with no Discounting. J. Math. Anal. Appl.26, 1969, 221–232. · Zbl 0169.51501 · doi:10.1016/0022-247X(69)90191-7
[20] Schweitzer, P.J.: Perturbation Theory and Markovian Decision Processes. MIT Operations Research Center Technical Report No. 15, 1965.
[21] –: Perturbation Theory and Undiscounted Markov Renewal Programming. Operations Research17, 1969, 716–727. · Zbl 0176.50003 · doi:10.1287/opre.17.4.716
[22] Veinott, A.F.Jr.: On Finding Optimal Policies in Discrete Dynamic Programming with No Discounting. Ann. Math. Statist.37, 1966, 1284–1294. · Zbl 0149.16301 · doi:10.1214/aoms/1177699272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.