Fujiwara, Daisuke A construction of the fundamental solution for the Schrödinger equation. (English) Zbl 0418.35032 J. Anal. Math. 35, 41-96 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 76 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 47Gxx Integral, integro-differential, and pseudodifferential operators 47F05 General theory of partial differential operators Keywords:Schrödinger equation; Feynman path integrals; oscillatory integrals; Fourier integral operators; stationary phase method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Albeverio, S. A.; Hoegh Krohn, R. J., Mathematical Theory of Feynman Path Integrals (1976), Berlin: Springer, Berlin · Zbl 0337.28009 [2] Asada, K.; Fujiwara, D., On the boundedness of integral transformations with rapidly oscillatory kernels, J. Math. Soc. Japan, 27, 623-639 (1975) · Zbl 0309.44001 [3] Asada, K.; Fujiwara, D., On some oscillatory integral transformations in L^2(R^n), Japan. J. Math., 4, 299-361 (1978) · Zbl 0402.44008 [4] Babitt, D. G., A summation procedure for certain Feynman integrals, J. Math. Phys., 4, 36-41 (1963) · Zbl 0112.45601 · doi:10.1063/1.1703885 [5] Birkhoff, G. D., Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc., 39, 681-700 (1933) · Zbl 0008.08902 [6] Calderón, A. P.; Vaillancourt, R., On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, 23, 374-378 (1970) · Zbl 0203.45903 · doi:10.2969/jmsj/02320374 [7] Cameron, R. H., A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. Phys., 39, 126-140 (1960) · Zbl 0096.06901 [8] P. Dirac,The Principle of Quantum Mechanics, third ed., Oxford, 1947. · Zbl 0030.04801 [9] Fedoryuk, M. V., The stationary phase methods and pseudo-differential operators, Russian Math. Surveys, 26, 65-115 (1971) · Zbl 0226.47029 · doi:10.1070/rm1971v026n01ABEH003813 [10] Feynman, R. P., Space time approach to nonrelativistic quantum mechanics, Rev. Mod. Phys., 20, 367-387 (1948) · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367 [11] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integral (1965), New York: McGraw-Hill, New York · Zbl 0176.54902 [12] Fujiwara, D., Fundamental solution of partial differential operators of Schrödinger type. I, Proc. Japan Acad., 50, 566-569 (1974) · Zbl 0299.35026 [13] D. Fujiwara,A construction of the fundamental solution for the Schrödinger equation, to appear in Proc. Japan Acad. [14] Fujiwara, D., A construction of fundamental solution for Schrödinger equation on the spheres, J. Math. Soc. Japan, 28, 483-505 (1976) · Zbl 0324.35026 [15] Fujiwara, D., On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad., 51, 96-99 (1975) · Zbl 0319.44004 · doi:10.3792/pja/1195518693 [16] Gelfand, I. M.; Yaglom, A. M., Integrals in functional spaces and its applications in quantum physics, J. Math. Phys., 1, 48-69 (1960) · Zbl 0092.45105 · doi:10.1063/1.1703636 [17] L. Hörmander,Pseudo-differential operators and hypoelliptic operators, Proc. Symp. on Pure Math. IX, Amer. Math. Soc., 1969. · Zbl 0167.09603 [18] Hörmander, L., Faurier integral operators, I, Acta Math., 127, 77-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052 [19] Hörmander, L., The existence of wave operators in scattering theory, Math. Z., 146, 69-91 (1976) · Zbl 0319.35059 · doi:10.1007/BF01213717 [20] Ito, K., Generalized uniform complex measures in Hilbertian metric space with their application to the Feynman path integral (1967), Berkeley: Univ. of California Press, Berkeley [21] Keller, J. B.; McLaughlin, D. W., The Feynman integrals, Amer. Math. Monthly, 82, 451-465 (1975) · Zbl 0304.35002 · doi:10.2307/2319736 [22] Maslov, V. P., Théorie des perturbations et méthodes asymptotiques (1970), Paris: Dunod, Paris [23] Morette, C., On the definition and approximation of Feynman path integrals, Phys. Rev., 81, 848-852 (1951) · Zbl 0042.45506 · doi:10.1103/PhysRev.81.848 [24] Nelson, E., Feynman path integrals and Schrödinger’s equation, J. Math. Phys., 5, 332-343 (1964) · Zbl 0133.22905 · doi:10.1063/1.1704124 [25] Rademacher, H., Uber partielle und totale differenzierbarkeit, I, Math. Ann., 99, 340-359 (1919) · JFM 47.0243.01 · doi:10.1007/BF01498415 [26] Schwartz, J. T., Non-Linear Functional Analysis (1969), New York: Gordon and Breach, New York · Zbl 0203.14501 [27] Schwartz, L., Théorie des distributions (1966), Paris: Hermann, Paris · Zbl 0149.09501 [28] H. Whitney,Geometric Integration Theory, Princeton Univ. Press, 1957. · Zbl 0083.28204 [29] K. Yajima,The quasi-classical limit of quantum scattering theory I, preprint, Univ. of Virginia, 1978;II, Long range scattering, preprint, Univ. of Virginia, 1978. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.