×

zbMATH — the first resource for mathematics

Modeling by shortest data description. (English) Zbl 0418.93079

MSC:
93E10 Estimation and detection in stochastic control theory
93B30 System identification
93E12 Identification in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kolmogorov, A., Three approaches to the quantitative definition of information, Probl. inf. transmission, 1, 1, (1968) · Zbl 0172.42701
[2] {\scH. Akaike}: Information theory and an extension of the maximum likelihood principle. 2nd International Symposium and Information Theory, B. N. Petrov and F. Caski, Eds., pp. 267-281. Akademiai Kiado, Budapest.
[3] Akaike, H., On entropy maximization principle, () · Zbl 0388.62008
[4] Schwarz, G., Estimating the dimension of a model, Ann. stat., 6, 2, (1978)
[5] Rissanen, J., Minmax entropy estimation for vector processes, (), 97-117
[6] Rissanen, J.; Ljung, L., Estimation of optimum structures and parameters for linear systems, Math. syst. theory, 131, 76-91, (1976) · Zbl 0336.93032
[7] Watanabe, S., ()
[8] Abramson, N., ()
[9] Kullback, S., ()
[10] Rissanen, J., Generalized kraft-inequality and arithmetic coding, IBM J. res. dev., 20, 3, 198-203, (May 1976)
[11] Hannan, E.J., ()
[12] Wallace, C.S.; Boulton, D.M., An information measure for classification, Comput. J., 11, 2, 185, (1968) · Zbl 0164.46208
[13] Åström, K.-J.; Eykhoff, P.E., System identification, a survey, Automatica, 7, 123-162, (1971) · Zbl 0219.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.