Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. IV. (English) Zbl 0419.35079


35Q99 Partial differential equations of mathematical physics and other areas of application
35J10 Schrödinger operator, Schrödinger equation
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
81U10 \(n\)-body potential quantum scattering theory
Full Text: DOI


[1] Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. math. Phys.22, 269–279 (1971) · Zbl 0219.47011 · doi:10.1007/BF01877510
[2] Alrichs, R.: Asymptotic behavior of atomic bound state wave functions. J. Math. Phys.14, 1860–1863 (1973) · doi:10.1063/1.1666258
[3] Alrichs, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Bounds for the long range behaviour of electronic wave functions. J. Chem. Phys.68, 1402–1410 (1978) · doi:10.1063/1.435959
[4] Alrichs, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: ”Schrödinger inequalities” and asymptotic behaviour of many electron densities. Phys. Rev. (to appear) · Zbl 0699.35214
[5] Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. math. Phys.22, 280–294 (1971) · Zbl 0219.47005 · doi:10.1007/BF01877511
[6] Berthier, A., Gaveau, B.: Critère de convergence des fonctionelles de Kac et application en mécanique quantique et en géometrie. J. Func. Anal. (to appear) · Zbl 0398.60076
[7] Brown, A., Pearcy, C.: Spectra of tensor products of operators. Proc. Am. Math. Soc.17, 162–166 (1966) · Zbl 0141.32202 · doi:10.1090/S0002-9939-1966-0188786-5
[8] Carmona, A.: Marseille-Luminy preprints (in preparation)
[9] Combes, J.M., Thomas, L.: Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators. Commun. math. Phys.34, 251–270 (1973) · Zbl 0271.35062 · doi:10.1007/BF01646473
[10] Davies, E.B.: Properties of Green’s functions of some Schrödinger operators. J. Lond. Math. Soc.7, 473–491 (1973) · Zbl 0271.47003
[11] Deift, P., Simon, B.: A time dependent approach to the completeness of multiparticle quantum systems. Comm. Pure Appl. Math.30, 573–583 (1977) · Zbl 0354.47004 · doi:10.1002/cpa.3160300504
[12] Enss, V.: A note on Hunzikers theorem. Commun. math. Phys.52, 233–238 (1977) · doi:10.1007/BF01609484
[13] Guerra, F., Rosen, L., Simon, B.: The vacuum energy forP({\(\phi\)})2. Infinite volume limit and coupling constant dependence. Commun. math. Phys.29, 233–247 (1973) · doi:10.1007/BF01645249
[14] Herbst, I., Sloan, A.: Perturbation of translation invariant positivity preserving semigroups onL 2(R N ). Trans. Am. Math. Soc. (to appear) · Zbl 0388.47022
[15] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: ”Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev.16A, 1782–1785 (1977)
[16] Hunziker, W.: Space-time behavior of Schrödinger wave functions. J. Math. Phys.7, 300–304 (1966) · Zbl 0151.43801 · doi:10.1063/1.1704932
[17] Jörgens, K., Weidmann, J.: Spectral properties of Hamiltonian operators. Lecture notes in mathematics, Vol. 319. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0248.35002
[18] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[19] Kato, T.: Schrödinger operators with singular potentials. Is. J. Math.13, 135–148 (1973) · Zbl 0246.35025 · doi:10.1007/BF02760233
[20] Lavine, R.: Private communication
[21] Mercuriev, S.P.: On the asymptotic form of three-particle wave functions of the discrete spectrum. Soviet J. Nucl. Phys.19, 222–229 (1974)
[22] Morgan III, J.: The exponential decay of sub-continuum wave functions of two-electron atoms. J. Phys. A10, L91-L93 (1977)
[23] O’Connor, T.: Exponential decay of bound state wave functions. Commun. math. Phys.32, 319–340 (1973) · doi:10.1007/BF01645613
[24] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press 1975 · Zbl 0308.47002
[25] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[26] Simon, B.: Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems. I. Proc. Am. Math. Soc.42, 395–401 (1974) · Zbl 0285.35008
[27] Simon, B.: Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems. III. Trans. Am. Math. Soc.208, 317–329 (1975) · Zbl 0305.35078
[28] Simon, B.: Geometric methods in multiparticle quantum systems. Commun. math. Phys.55, 259–274 (1977) · Zbl 0413.47008 · doi:10.1007/BF01614550
[29] Simon, B.: Functional integration and quantum physics. New York: Academic Press (expected 1979) · Zbl 0434.28013
[30] Slaggie, E.L., Wichmann, E.H.: Asymptotic properties of the wave function for a bound nonrelativistic system. J. Math. Phys.3, 946–968 (1962) · doi:10.1063/1.1724311
[31] Vock, E.: ETH thesis (in preparation)
[32] Zhislin, G.: Discussion of the spectrum of the Schrödinger operator for systems of many particles. Tr. Mosk. Mat. Obs.9, 81–128 (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.