×

zbMATH — the first resource for mathematics

Distributions involutives singulieres. (French) Zbl 0419.58002

MSC:
58A30 Vector distributions (subbundles of the tangent bundles)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] F. DUMORTIER et R. ROUSSARIE, Linéarisation différentiable de germes d’actions de R2 et de champs holomorphes, C.R. Acad. Sc., Paris, t. 285 (14 Nov. 1977), 841-844. · Zbl 0367.58003
[2] M. FLATO, G. PINCZON, J. SIMON, Non linear representations of Lie groups, Ann. Scient. Ec. Norm. Sup., t. 10 (1977), 405-418. · Zbl 0384.22005
[3] S. GUELORGET et R. MOUSSU, Le théorème de Frobenius pour un pli intégrable, C.R. Acad. Sc., Paris, t. 282-9 (1976), 445. · Zbl 0316.58001
[4] W. GUILLEMIN et S. STERNBERG, Remarks on a paper of Hermann, Trans. Amer. Math. Soc., 130 (1968), 110-116. · Zbl 0155.05701
[5] R. HERMANN, Formal linearization of a semi-simple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc., 130 (1968), 105-109. · Zbl 0155.05604
[6] B. MALGRANGE, Frobenius avec singularité codimension 1, Publ. Math. IHES, 46 (1976), 163-173. · Zbl 0355.32013
[7] R. MOUSSU, Sur l’existence d’intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier, Grenoble, XXVI fasc. 2 (1976), 171-220. · Zbl 0328.58002
[8] S. STERNBERG, Local contractions and a theorem of Poincaré, Amer. J. of Math., Vol. 79 (1957), 809-824. · Zbl 0080.29902
[9] K. SAITO, On a generalisation of de Rham lemma, Ann. Inst. Fourier, XXVI fasc. 2 (1976), 165-170. · Zbl 0338.13009
[10] F. TAKENS, Singularities of vector fields, Publ. Math. I.H.E.S., 43, (1974), 47-100. · Zbl 0279.58009
[11] D. CERVEAU, Distributions involutives singulières et formes de Pfaff, Thèse de 3ème cycle (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.