Cerveau, Dominique Distributions involutives singulieres. (French) Zbl 0419.58002 Ann. Inst. Fourier 29, No. 3, 261-294 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 12 Documents MSC: 58A30 Vector distributions (subbundles of the tangent bundles) Keywords:involutive plane fields with singularities; linearization PDFBibTeX XMLCite \textit{D. Cerveau}, Ann. Inst. Fourier 29, No. 3, 261--294 (1979; Zbl 0419.58002) Full Text: DOI Numdam EuDML References: [1] [1] et , Linéarisation différentiable de germes d’actions de R2 et de champs holomorphes, C.R. Acad. Sc., Paris, t. 285 (14 Nov. 1977), 841-844. · Zbl 0367.58003 [2] [2] , , , Non linear representations of Lie Groups, Ann. Scient. Ec. Norm. Sup., t. 10 (1977), 405-418. · Zbl 0384.22005 [3] [3] et , Le théorème de Frobenius pour un pli intégrable, C.R. Acad. Sc., Paris, t. 282-9 (1976), 445. · Zbl 0316.58001 [4] [4] et , Remarks on a paper of Hermann, Trans. Amer. Math. Soc., 130 (1968), 110-116. · Zbl 0155.05701 [5] [5] , Formal linearization of a semi-simple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc., 130 (1968), 105-109. · Zbl 0155.05604 [6] [6] , Frobenius avec singularité codimension 1, Publ. Math. IHES, 46 (1976), 163-173. · Zbl 0355.32013 [7] [7] , Sur l’existence d’intégrales premières pour un germe de forme de Pfaff, Ann. Inst. Fourier, Grenoble, XXVI fasc. 2 (1976), 171-220. · Zbl 0328.58002 [8] [8] , Local contractions and a theorem of Poincaré, Amer. J. of Math., Vol. 79 (1957), 809-824. · Zbl 0080.29902 [9] [9] , On a generalisation of de Rham lemma, Ann. Inst. Fourier, XXVI fasc. 2 (1976), 165-170. · Zbl 0338.13009 [10] [10] , Singularities of Vector Fields, Publ. Math. I.H.E.S., 43, (1974), 47-100. · Zbl 0279.58009 [11] [11] , Distributions involutives singulières et formes de Pfaff, Thèse de 3ème cycle (1978). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.