×

zbMATH — the first resource for mathematics

Mixed finite elements in \(\mathbb{R}^3\). (English) Zbl 0419.65069

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A25 Electromagnetic theory, general
74S05 Finite element methods applied to problems in solid mechanics
65D05 Numerical interpolation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adam JC, Gourdin Serveniere A, Nedelec JC (1980) Study of an implicit scheme for integrating Maxwell’s equation. (in press) · Zbl 0433.73067
[2] Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO 8:129-151 · Zbl 0338.90047
[3] Ciarlet PG (1978) The finite element method for elliptic problems. North Holland, Amsterdam, New York · Zbl 0383.65058
[4] Duvaut G, Lions JL (1972) Les inéquations en mécanique et en physique. Dunod, Paris · Zbl 0298.73001
[5] Fortin M (1977) An analysis of the convergence of mixed finite element methods. RAIRO 11:341-354 · Zbl 0373.65055
[6] Glowinski R, Marroco A (1975) Sur l’approximation par éléments finis d’ordre un et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Rapport de Recherche IRIA no 115 · Zbl 0368.65053
[7] Petravic (1976) Numerical modeling of pulsar magnetospheres. Computer Physics Communications 12:9-19 · doi:10.1016/0010-4655(76)90006-0
[8] Raviart PA, Thomas JM (1977) A mixed finite element method for 2nd order elliptic problems. In: Dold A, Eckmann B (eds). Mathematical aspects of finite element methods. Proceedings of the conference held in Rome, 10-12 Dec, 1975. Springer, Berlin Heidelberg New York (Lecture Notes in Mathematics vol 606)
[9] Thomas JM (1977) Doctoral Thesis. Université de Paris VI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.