×

zbMATH — the first resource for mathematics

A Galerkin collocation method for some integral equations of the first kind. (English) Zbl 0419.65088

MSC:
65R20 Numerical methods for integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
45B05 Fredholm integral equations
45E99 Singular integral equations
45L05 Theoretical approximation of solutions to integral equations
31A25 Boundary value and inverse problems for harmonic functions in two dimensions
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
41A25 Rate of convergence, degree of approximation
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abou El-Seoud, M. S.: Numerische Behandlung von schwach singulären Integralgleichungen erster Art. Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, 1979. · Zbl 0429.65114
[2] Abou El-Seoud, M. S.: Kollokationsmethode für schwach singuläre Integralgleichungen erster Art. ZAMM59, T45-T47 (1979). · Zbl 0412.65062
[3] Abou El-Seoud, M. S.: Bemerkungen zur numerischen Behandlung einer Klasse von schwach singulären Integralgleichungen erster Art unter Verwendung von Kollokations- und Galerkinmethoden. Fachbereich Mathematik, Technische Hochschule Darmstadt, Federal Republic of Germany, Preprint 492 (1979). · Zbl 0598.65097
[4] Anderson, D. G.: Gaussian quadrature formulae for \(\int\limits_0^1 { - \ln (x) f(x) dx} \) . Math. Comp.19, 477–481 (1965). · Zbl 0132.36803
[5] Aubin, J. P.: Approximation of elliptic boundary-value problems. New York: Wiley-Interscience 1972. · Zbl 0248.65063
[6] Berrut, J. P.: Numerische Lösung der Symm’schen Integralgleichungen durch Fouriermethoden. (Diplomarbeit ETH Zürich, 1979/79, Institut für Angewandte und Numerische Mathematik. To appear.) Lecture at the Conference: Konstruktive Verfahren in der komplexen Analysis, Mathematisches Forschungsinstitut Oberwolfach, Federal Republic of Germany, August 6–8, 1978.
[7] Bogomolnii, A., Eskin, G., Zuchowizkii, S.: Numerical solution of the stamp problem. Comp. Meth. Appl. Mech. Eng.15, 149–159 (1978). · Zbl 0387.73011 · doi:10.1016/0045-7825(78)90019-1
[8] Christiansen, S.: Numerical solutions of an integral equation with a logarithmic kernel. BIT, Nordisk Tidskr. Inform.-Behandling11, 276–287 (1971). · Zbl 0229.65090
[9] Christiansen, S.: A review of some integral equations for solving the Saint-Venant torsion problem. The Danish Center of Applied Mathematics and Mechanics, The Technical University of Denmark, Report 109 (1976).
[10] Christiansen, S.: On two methods for elimination of non-unique solutions of an integral equation with logarithmic kernel. The Technical University of Denmark, Report 162 (1979).
[11] Christiansen, S., Hansen, E. B.: Numerical solution of boundary value problems through integral equations. The Technical University of Denmark, Report 127 (1977).
[12] Christiansen, S., Rasmussen, H.: Numerical solution for two-dimensional annular electrochemical machining problems. The Technical University of Denmark, Report 53 (1973).
[13] Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North Holland 1978. · Zbl 0383.65058
[14] Davis, P. J., Rabinowitz, P.: Methods of numerical integration. New York-San Francisco-London: Academic Press 1975. · Zbl 0304.65016
[15] Djaoua, M. M.: Méthode d’éléments finis pour la résolution d’un problème extérieur dans \(\mathbb{R}\)3. Centre de Mathem. Appliquées, Ecole Polytechnique, Palaiseau, France, Rapport Interne No. 3 (1975).
[16] Djaoua, M. M.: Equations intégrales pour un problème singulier dans le plan. Thèse, L’Université Pierre et Marie Curie, Paris VI, 1977.
[17] Djaoua, M. M.: A method of calculation of lifting flows around 2-dimensional corner shaped bodies. Centre de Mathem. Appliquées, Ecole Polytechnique, Palaiseau, France, Rapport Interne No. 34 (1978). · Zbl 0495.76016
[18] Fichera, G.: Linear elliptic equations of higher order in two independent variables and singular integral equations, in: Proc. conf. partial differential equations and conf. mechanics. University Wisconsin Press 1961. · Zbl 0111.29602
[19] Fichera, G., Ricci, P.: The single layer potential approach in the theory of boundary value problems for elliptic equations, in: Lecture Notes in Mathematics, Vol. 561, pp. 39–50. Berlin-Heidelberg-New York: Springer 1976. · Zbl 0346.35044
[20] Fix, G. J., Strang, G.: An analysis of the finite element method. Englewood Cliffs, N. J.: Prentice-Hall 1973. · Zbl 0356.65096
[21] Gaier, D.: Integralgleichungen erster Art und konforme Abbildung. Math. Zeitschr.147, 113–129 (1976). · Zbl 0312.30006 · doi:10.1007/BF01164277
[22] Giroire, J.: Formulation variationnelle par équations intégrales de problèmes aux limites extérieurs. Centre de Mathem. Appliquées, Ecole Polytechnique, Palaiseau, France, Rapport Interne No. 6 (1976).
[23] Gohberg, I. C., Feldman, I. A.: Convolution equations and projection methods for their solution. Providence, Rhode Island: AMS Transl. 1974.
[24] Goldstein, R. V., Entov, U. M., Zazovski, A. F.: Application of direct variational method to the solution of mixed boundary value problems. Int. J. Num. Methods Eng.12, 1213–1239 (1978). · Zbl 0399.73024 · doi:10.1002/nme.1620120803
[25] Hansen, E. B.: Numerical solution of integro-differential and singular integral equations for plate bending problems. J. Elasticity6, 39–56 (1976). · Zbl 0345.73047 · doi:10.1007/BF00135175
[26] Hansen, E. B.: An integral equation method for stress concentration problems in cylindrical shells. J. Elasticity7, 283–305 (1977). · Zbl 0366.73074 · doi:10.1007/BF00041074
[27] Hayes, J. K., Kahaner, D. K., Kellner, R. G.: An improved method for numerical conformal mapping. Math. Comp.26, 327–334 (1972). · Zbl 0239.65033 · doi:10.1090/S0025-5718-1972-0301176-8
[28] Hein, J. C.: Eine Integralgleichungsmethode zur Lösung eines gemischten Randwertproblems der beliebig belasteten Kreiszylinderschale mit Ausschnitten glatter Berandung. Dissertation, Technische Hochschule Darmstadt, 1979.
[29] Henrici, P.: Baryzentrische Formeln zur trigonometrischen Interpolation und Konjugiertenbestimmung (Lecture at the annual GAMM conference 1979 in Wiesbaden). (To appear.)
[30] Hsiao, G. C., Kopp, P., Wendland, W. L.: Some applications of a Galerkin-collocation method for integral equations of the first kind. (To appear). · Zbl 0546.65091
[31] Hsiao, G. C., MacCamy, R. C.: Solution of boundary value problems by integral equations of the first kind. SIAM Review15, 687–705 (1973). · Zbl 0265.45009 · doi:10.1137/1015093
[32] Hsiao, G. C., Wendland, W. L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl.58, 449–481 (1977). · Zbl 0352.45016 · doi:10.1016/0022-247X(77)90186-X
[33] Hsiao, G. C., Wendland, W. L.: Nitsche’s trick for integral equations. (To appear.)
[34] Jaswon, M. A., Symm, G. T.: Integral equation methods in potential theory and elastostatics. London: Academic Press 1977. · Zbl 0414.45001
[35] Kopp, P., Wendland, W. L.: Numerische Behandlung von Integralgleichungen 1. Art bei zähen Strömungen und in der ebenen Elastizitätstheorie. Fachbereich Mathematik, Technische Hochschule Darmstadt, Federal Republic of Germany, Preprint 411 (1978).
[36] Krawietz, A.: Energetische Behandlung des Singularitätenverfahrens. Dissertation, Technische Universität Berlin, 1972.
[37] Kress, R.: Über die Berechnung konjugierter Funktionen. Computing10, 177–187 (1972). · Zbl 0259.65028 · doi:10.1007/BF02242392
[38] Kress, R., Knauff, W.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl.72, 215–235 (1979). · Zbl 0424.35031 · doi:10.1016/0022-247X(79)90285-3
[39] Kupradze, V. D., Gegelia, T. G., Basheleishvili, M. O., Burchuladze, T. V.: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Amsterdam. North Holland 1979.
[40] Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York: Springer 1972. · Zbl 0227.35001
[41] MacCamy, R. C.: On a class of two-dimensional Stokes-flows. Arch. Rational Mech. Anal.21, 256–258 (1966). · Zbl 0147.45203 · doi:10.1007/BF00253490
[42] Marin, S. P.: A finite element method for problems involving the Helmholtz equation in two dimensional exterior regions. Ph. D. Thesis, Department Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1978.
[43] Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM48, T83-T85 (1968). · Zbl 0207.16202
[44] Mehlhorn, G., Neurath, E.: Das ebene elektrostatische Potentialfeld als Analogie zu Problemen der Elastomechanik. Forschungsberichte, Institut Massivbau, Technische Hochschule Darmstadt36 (1977).
[45] Milne-Thomson, L. M.: The calculus of finite differences. London: Macmillan 1960. · JFM 59.1111.01
[46] Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1953. · Zbl 0052.41402
[47] Nedelec, J. C.: Curved finite element methods for the solution of singular integral equations on surfaces in \(\mathbb{R}\)3. Comp. Math. Appl. Mech. Engin.8, 61–80 (1976). · Zbl 0333.45015 · doi:10.1016/0045-7825(76)90053-0
[48] Nedelec, J. C.: Computation of eddy currents on a surface in \(\mathbb{R}\)3 by finite element methods. Centre de Mathem. Appliquées, Ecole Polytechnique, Palaiseau, France, Rapport Interne10 (1976). · Zbl 0348.65109
[49] Nedelec, J. C.: Approximation des équations intégrales en mécanique et en physique. Lecture Notes, Centre de Mathématiques Appliquées, Ecole Polytechnique. Palaiseaux, France (1977).
[50] Nedelec, J. C., Planchard, J.: Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans \(\mathbb{R}\)3. Revue Franç. Automatique, Inf. Rech. OperationnelleR 3, 105–129 (1973).
[51] Prössdorf, S.: Some classes of singular equations. Amsterdam: North Holland 1978.
[52] Prößdorf, S., Silbermann, B.: Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. Leipzig: Teubner 1977. · Zbl 0364.65044
[53] Ricci, P.: Sui potenziale di semplico strato per le equationi ellittiche di ordine superiore in due variabili. Rend. Mat.7, 1–39 (1974). · Zbl 0302.35042
[54] Rieder, G.: Iterationsverfahren und Operatorgleichungen in der Elastizitätstheorie. Abh. d. Braunschweigischen Wiss. Ges.14, 109–344 (1962). · Zbl 0156.45003
[55] Le Roux, M. N.: Résolution numérique du problème du potential dans le plan par une méthode variationnelle d’éléments finis, Thèse, L’Université de Rennes, Série A, No. d’ordre 347, No. de série 38 (1974).
[56] Le Roux, M. N.: Equations intégrales pour le problème du potential électrique dans le plan. C. R. Acad. Sc.A 1974, 278. · Zbl 0283.45006
[57] Le Roux, M. N.: Méthode d’élément finis pour la résolution numérique de problèmes extérieurs en dimension deux. Revue Franç. Automatique, Inf. Rech. OperationnelleR 11, 27–60 (1977).
[58] Sokolnikoff, I. S.: The elastostatic boundary-value problems, in: Modern mathematics for the engineer. McGraw-Hill 1956.
[59] Stephan, E., Wendland, W. L.: Remarks to Galerkin and least squares methods with finite elements for general elliptic problems, in: Lecture Notes in Mathematics, Vol. 564, pp. 461–471. Berlin-Heidelberg-New York: Springer 1976; Manuscripta Geodaetica1, 93–123 (1976). · Zbl 0345.35092
[60] Stroud, A. H., Secrest, D.: Gaussian quadrature formulas. Englewood Cliffs, N. J.: Prentice-Hall 1966. · Zbl 0156.17002
[61] Symm, G. T.: An integral equation method in conformal mapping. Numer. Math.9, 250–258 (1966). · Zbl 0156.16901 · doi:10.1007/BF02162088
[62] Triebel, H.: Fourier analysis and function spaces. Leipzig: Teubner 1977. · Zbl 0345.42003
[63] Voronin, V. V., Cecoho, V. A.: An interpolation method for solving an integral equation of the first kind with a logarithmic singularity. Dokl. Akad. Nauk SSSR216; Soviet Math. Dokl.15, 949–952 (1974). · Zbl 0303.45018
[64] Weisel, J.: Lösung singulärer Variationsprobleme durch die Verfahren von Ritz und Galerkin mit finiten Elementen – Anwendungen in der konformen Abbildung. Mitteilungen aus d. Mathem. Seminar Gießen138 (1979). · Zbl 0404.65056
[65] Wendland, W. L.: Elliptic systems in the plane. London: Pitman 1979. · Zbl 0396.35001
[66] Wendland, W. L., Stephan, E., Hsiao, G. C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods in the Applied Sciences1, 265–321 (1979). · Zbl 0461.65082 · doi:10.1002/mma.1670010302
[67] Wendland, W. L.: Zur Behandlung elliptischer Randwertaufgaben mit Integralgleichungen. Wissenschaftliche Schriftenreihe der Technischen Hochschule Karl-Marx-Stadt, Tagungsberichte, 7. Tagung Probl. Meth. Math. Physik (II. Teil), 143–153 (1979).
[68] Wickel, W.: Ein Integralgleichungssystem zur Neumannschen Randwertaufgabe für eine Gleichung 4. Ordnung. ZAMM58, T401-T403 (1978). · Zbl 0392.45007
[69] Zienkiewicz, O. C., Kelly, D. W., Bettess, P.: Marriage à la mode – The best of both worlds (finite elements and boundary integrals), in: Energy methods in finite e ement analysis (Glowinski, R., Rodin, E. Y., Zienkiewicz, O. C., eds.), pp. 81–107. Chichester: J. Wiley 1979 · Zbl 0418.73065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.