×

Division algebras of degree 4 and 8 with involution. (English) Zbl 0422.16010


MSC:

16K20 Finite-dimensional division rings
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16S34 Group rings
Full Text: DOI

References:

[1] A. A. Albert,Structure of Algebras, Amer. Math. Soc. Colloq. Publ.24, Providence, R.I., 1961.
[2] Amitsur, S. A.; Saltman, D., Generic abelian crossed products, J. Algebra, 51, 76-87 (1978) · Zbl 0391.13001 · doi:10.1016/0021-8693(78)90136-9
[3] Rowen, L., Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc., 79, 219-223 (1973) · Zbl 0252.16007 · doi:10.1090/S0002-9904-1973-13162-3
[4] Rowen, L., Central simple algebras, Israel J. Math., 29, 285-301 (1978) · Zbl 0392.16011
[5] Tignol, J., Sur les classes de similitude de corps a involution de degré 8, C. R. Acad. Sci. Paris, 286, 875-876 (1978) · Zbl 0374.16006
[6] J. Tignol, Decomposition et descente de produits tensoriels d’algebres de quaternions, Rapport Sem. Math. Pure UCL76 (1978). · Zbl 0444.16010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.