×

zbMATH — the first resource for mathematics

Models of isotropic simple Lie algebras. (English) Zbl 0422.17006

MSC:
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allison B.N., Amer. J. Math 98 pp 285– (1976) · Zbl 0342.17008
[2] Allison B.N., Math. Ann 98 (1976)
[3] Faulkner J.R., Mem. Amer. Math. Soc 104 (1970)
[4] Faulkner J.R., Trans. Amer Math. Soc 155 pp 397– (1971)
[5] Hein W., Trans. Amer. Math. Soc 205 pp 79– (1975)
[6] Humphreys J.E., Introduction to Lie algebras and representation theory (1972) · Zbl 0254.17004
[7] Jacobson N., Structure and representations of Jordan algebras (1968) · Zbl 0218.17010
[8] Jacobson N., Exceptional Lie algebras (1971) · Zbl 0215.38701
[9] Kac V.G., Math. USSR-Izv 5 pp 777– (1971) · Zbl 0252.17003
[10] Kantor I.L., Trudy Sem. Vektor. Tenzor. Anal 16 pp 407– (1972)
[11] Kantor I.L., Soviet Math. Dokl 14 pp 254– (1973)
[12] Kostant B., Amer. J. Math 81 pp 973– (1959) · Zbl 0099.25603
[13] McCrimmon K., Trans.Amer. Math. Soc 139 pp 495– (1969)
[14] McCrimmon K., Bull.Amer. Math. Soc 84 pp 612– (1978) · Zbl 0421.17010
[15] Schafer R.D., An introduction to nonassociative algebras (1966) · Zbl 0145.25601
[16] Seligman G.B., Rational methods in Lie algebras (1976) · Zbl 0334.17002
[17] Springer T.A., Nederl. Akad. Wetensch. Proc. Ser 65 pp 259– (1962)
[18] Tits J., Nederl. Akad. Wetensch. Proc. Ser 65 pp 530– (1962)
[19] Tits J., construction, Nederl. Akad. Wetensch. Proc. Ser 69 pp 223– (1966)
[20] Yamaguti K., On the metasymplectic geometry and ternary systems · Zbl 0281.50015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.