Dobrushin, R. L. Vlasov equations. (English) Zbl 0422.35068 Funct. Anal. Appl. 13, 115-123 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 175 Documents MSC: 35Q82 PDEs in connection with statistical mechanics 35Q83 Vlasov equations 60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.) Keywords:Vlasov equations; kinetic equations in statistical mechanics Citations:Zbl 0405.35069 PDFBibTeX XMLCite \textit{R. L. Dobrushin}, Funct. Anal. Appl. 13, 115--123 (1979; Zbl 0422.35068) Full Text: DOI References: [1] R. Liboff, Introduction to the Theory of Kinetic Equations, Wiley, New York?Toronto?Sydney?London (1969). · Zbl 0215.56702 [2] W. Brawn and K. Hepp, ”The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles,” Commun. Math. Phys.,56, No. 2, 101-113 (1977). · Zbl 1155.81383 · doi:10.1007/BF01611497 [3] V. P. Maslov, ”Self-consistent field equations,” in: Contemporary Problems in Mathematics [in Russian], Vol. 11, VINITI, Moscow (1978), pp. 153-234. · Zbl 0404.45008 [4] L. V. Kantorovich and G. Sh. Rubinshtein, ”On a function space and some extremal problems,” Dokl. Akad. Nauk SSSR,115, No. 6, 1058-1061 (1957). · Zbl 0081.11501 [5] V. Friedrich, Stetige Transportoptiemierung, ihre Beziehungen zur Theorie der hölderstetigen Funktionen und einige ihrer Anwendungen, Berlin, VEB Deutscher Verlag der Wiss. (1972). · Zbl 0362.46014 [6] R. L. Dobrushin, ”Determination of a system of random variables by means of conditional distributions,” Teor. Veroyatn. Prilozhen.,15, No. 3, 469-497 (1970). · Zbl 0264.60037 [7] M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, ”Existence and uniqueness of DLR measure for unbounded spin-systems,” Z. Wahrsch.,41, No. 4, 313-334 (1972). · Zbl 0369.60116 · doi:10.1007/BF00533602 [8] L. N. Vasershtein, ”Markov processes on a countable product of spaces which describe large systems of automata,” Probl. Peredachi Inf.,5, No. 3, 64-71 (1969). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.