Levin, V. L.; Milyutin, A. A. Ein Problem über die Massenverschiebung mit unstetiger Kostenfunktion und die Massen-Formulierung eines Dualitätsproblems für konvexe Extremalprobleme. (Russian) Zbl 0422.46060 Usp. Mat. Nauk 34, No. 3(207), 3-68 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Review MSC: 46N99 Miscellaneous applications of functional analysis 46B42 Banach lattices 46A55 Convex sets in topological linear spaces; Choquet theory 28C15 Set functions and measures on topological spaces (regularity of measures, etc.) 28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections 28C05 Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures 90C48 Programming in abstract spaces 90C05 Linear programming 54C60 Set-valued maps in general topology 54C65 Selections in general topology 49K27 Optimality conditions for problems in abstract spaces 49K99 Optimality conditions Keywords:programming in abstract spaces; Radon measure on alpha-compact space; triangle inequality; lower semi-continuity; A-operation; analytic set; Baire set; measurable selector; Banach lattice of bounded functions; duality theory; infinite dimensional linear programming; superlinear multifunction; Borel extension of Borel functions; continuous selectors; convex-valued multifunctions; lower semicontinuous set-valued maps Citations:Zbl 0061.097; Zbl 0338.90044; Zbl 0401.49017 PDF BibTeX XML Cite \textit{V. L. Levin} and \textit{A. A. Milyutin}, Usp. Mat. Nauk 34, No. 3(207), 3--68 (1979; Zbl 0422.46060) OpenURL