zbMATH — the first resource for mathematics

Ultrametric hierarchical clustering algorithms. (English) Zbl 0422.62057

62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI
[1] Anderberg, M. R.Cluster analysis for applications. New York: Academic Press, 1973. · Zbl 0299.62029
[2] Cormack, R. M. A review of classification.Journal of the Royal Statistical Society, (Series A), 1971,134, 321–367.
[3] D’Andrade, R. U-statistic hierarchical clustering.Psychometrika, 1978,43, 59–68. · Zbl 0402.62036 · doi:10.1007/BF02294089
[4] Hubert, L. J. Monotone invariant clustering procedures.Psychometrika, 1973,38, 47–62. · Zbl 0251.92013 · doi:10.1007/BF02291173
[5] Jardine, N., & Sibson, R.Mathematical taxonomy. New York: Wiley, 1971.
[6] Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254. · Zbl 1367.62191 · doi:10.1007/BF02289588
[7] Lance, G. N., & Williams, W. T. A generalized sorting strategy for computer classification.Nature, 1966,212, 218. · doi:10.1038/212218a0
[8] Lance, G. N., & Williams, W. T. A general theory of classificatory sorting strategies: I. Hierarchical systems.Computer Journal, 1967,9, 373–380.
[9] Williams, W. T., Lance, G. N., Dale, M. B., & Clifford, H. T. Controversy concerning the criteria for taxonometric strategies.Computer Journal, 1971,14, 162–165. · Zbl 0234.68041 · doi:10.1093/comjnl/14.2.162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.