Delay effects on the existence problems for differential equations in Banach space. (English) Zbl 0423.34090


34K05 General theory of functional-differential equations
34G10 Linear differential equations in abstract spaces
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: DOI


[1] Ambrosetti, A., Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, (Rend. Sem. Mat. Univ. Padova, 39 (1967)), 349-360 · Zbl 0174.46001
[3] Dieudonné, J., Duex examples singuliers d’équations différentielles, Acta Sci. Math. (Szeged), 12, 38-40 (1950), (Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, pars B) · Zbl 0037.06002
[4] Godunov, A. N., O tieoremie Peano w Banachowych prostranstwach, Funkcional. Anal. i Priložen., 9, 59-60 (1975), wyp. 1
[5] Goebel, K., Grubość zbiorów w przestrzeniach metrycznych i jej zastosowanie w teorii punktów stałych (1970), Rozprawa habilitacyjna: Rozprawa habilitacyjna Lublin, (in Polish)
[6] Goebel, K.; Rzymowski, W., An existence theorem for the equations \(x′ = ƒ(t, x)\) in Banach space, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 18, No. 7, 367-370 (1970) · Zbl 0202.10003
[7] Goltzer, J. I.; Zvierkin, A. M., On the existence and the uniqueness of the solutions of the differential equations with a delay in Banach spaces, Differencial’nye Uravnenija, 12, No. 8, 1404-1409 (1976), (in Russian)
[8] Kuratowski, K., Topologie, Vol. II (1958), Warszawa
[9] Olech, Cz., On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 8, 667-675 (1960) · Zbl 0173.35303
[10] Szufla, S., Measure of noncompactness and ordinary differential equations in Banach spaces, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 18, 831-835 (1971) · Zbl 0218.46016
[11] Yorke, J., A continuous differential equation in Hilbert space without existence, Funkcial Ekvac., 13, 19-21 (1970) · Zbl 0248.34061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.