×

zbMATH — the first resource for mathematics

On a mixed finite element approximation of the Stokes problem. I: Convergence of the approximate solutions. (English) Zbl 0423.65059

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Jamet, P., Raviart, P.A.: Numerical solution of the stationary Navier-Stokes equations by finite element methods. In: Computing methods in applied sciences and engineering, Part 1, R. Glowinski, J.L. Lions, eds., pp. 193-223. Lecture Notes in Computer Sciences, Vol. 10. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0285.76007
[2] Temam, R.: Navier-Stokes Equations. Amsterdam: North-Holland 1977 · Zbl 0383.35057
[3] Girault, V., Raviart, P.A.: An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. (in press 1979) · Zbl 0396.65070
[4] Raviart, P.A.: Finite element methods and Navier-Stokes equations. In: Computing methods in applied sciences and engineering, 1977, Part 2 (R. Glowinski and J.L. Lious, eds.) pp. 27-47. Lecture Notes in Physics, Vol. 91. Berlin-Heidelberg-New York: Springer 1979
[5] Le Tallec, P.: Simulation num?rique d’?coulements visqueux incompressible par des m?thodes d’?m?ments finis mixtes. Th?se de 3?me cycle, Universit? Pierre et Marie Curie, 1978
[6] Cabannes, H., Temam, R. (eds.): Proceedings of the third international conference on numerical methods in fluid mechanics, Lecture Notes in Physics, Vol. 18 and 19, Berlin-Heidelberg-New York: Springer 1973 · Zbl 0249.00004
[7] Richtmyer, R.D. (ed.): Proceedings of the fourth international conference on numerical methods in fluid mechanics. Lecture Notes in Physics, Vol. 35, Berlin-Heidelberg-New York: Springer 1975 · Zbl 0315.00007
[8] Van de Vooren, A.I., Zandbergen, P.J. (eds.): Proceedings of the fifth international conference on numerical methods in fluid dynamics. Lecture Notes in Physics, Vol. 59, Berlin-Heidelberg-New York: Springer 1976 · Zbl 0348.00022
[9] Gallagher, R.H., Oden, J.T., Taylor, C., Zienkiewicz, O.C. (eds.): Finite elements in fluids, Vol. 1, Chichester: John Wiley and Sons 1975 · Zbl 0341.76001
[10] Gallagher, R.H., Oden, J.T., Taylor, C., Zienkiewicz, O.C. (eds.): Finite elements in fluids, Vol. 2, Chichester: John Wiley and Sons 1975 · Zbl 0341.76001
[11] Gallagher, R.H., Zienkiewicz, O.C., Oden, J.T., Morandi Cecchi, M., Taylor, C. (eds.): Finite elements in fluids, Vol. 3, Chichester: John Wiley and Sons 1978 · Zbl 0403.76004
[12] Fortin, M.: Calcul num?rique des ?coulements des fluides de Bingham et des fluides Newtoniens incompressibles par la m?thode des ?l?ments finis. Th?se d’Etat, Universit? Pierre et Marie Curie, 1972
[13] Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. Rev. Fran?aise Automat. Informat. Recherche Op?rationnelle, Analyse Num?rique,R-3, 33-76 (1973)
[14] Hood, P., Taylor, C.: A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids1, 73-100 (1973) · Zbl 0328.76020 · doi:10.1016/0045-7930(73)90027-3
[15] Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid mechanics. In: Computational methods and problems in aeronautical fluid dynamics, pp. 158-197 London: Academic Press 1976
[16] Zienkiewicz, O.C.: The finite element method in engineering sciences. London: McGraw Hill 1978
[17] Bercovier, M.: Perturbation of mixed variational problems. Application to mixed finite element methods. Rev. Fran?aise Automat. Informat. Recherche Op?rationnelle, Analyse Num?rique12, 3, 211-236 (1978)
[18] Hughes, T.J.R., Taylor, R.L., Levy, J.F.: High reynolds number, steady, incompressible flows by a finite element method. In: Finite elements in fluids, Vol. 3 (R.H. Gallagher, O.C. Zienkiewicz, J.T. Oden, M. Morandi Cecchi, C. Taylor, eds.) pp. 55-72. John Wiley and Son 1979
[19] Fortin, M., Thomasset, F.: Mixed finite element methods for incompressible flow problems. J. of Comp. Physics (in press, 1979) · Zbl 0395.76023
[20] Johnson, C.: A mixed finite element method for the Navier-Stokes equations. Rev. Fran?aise Automat. Informat. Recherche Op?rationnelle Analyse Num?rique,12, 4, 335-348 (1978)
[21] Glowinski, R., Pironneau, O.: Numerical methods for the biharmonic equation and for the twodimensional Stokes problem. SIAM Review,17, 2, 167-212 (1979) · Zbl 0427.65073 · doi:10.1137/1021028
[22] Glowinski, R., Pironneau, O.: On a mixed finite element approximation of the Stokes’ problem (II). Solution of the approximate problems. Numer. Math. (in press 1979) · Zbl 0423.65059
[23] Bercovier, M., Pironneau, O.: Estimations d’erreurs pour la r?solution du probl?me de Stokes en ?l?ments finis conformes de Lagrange. C.R. Acad. Sc. Paris, t.285A, 1085-1087, (1977) · Zbl 0377.65055
[24] Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. (in press 1979) · Zbl 0423.65058
[25] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975 · Zbl 0314.46030
[26] Lions, J.L., Magenes, E.: Non-homogenous boundary value problems and applications. Vol. 1, Berlin-Heidelberg-New York: Springer 1972 · Zbl 0223.35039
[27] Necas, J.: Les m?thodes directes en th?orie des ?quations elliptiques, Paris: Masson 1967
[28] Oden, J.T., Reddy, J.N.: Mathematical theory of finite elements. New York: John Wiley and Sons 1976 · Zbl 0336.35001
[29] Lions, J.L.: Quelques m?thodes de r?solution des probl?mes aux limites non lin?aire. Paris: Dunod 1969
[30] Rockaffelar, R.T.: Convex analysis: Princeton Univ. Press, N.J., 1970
[31] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Rev. Fran?aise Automat. Informat. Recherche Op?rationnelle, Numerical Analysis,8-R2, 129-151, (1974)
[32] Glowinski, R., Lions, J.L, Tremolieres, R.: Analyse num?rique des in?quations variationnelles, Vol. 2. Paris: Dunod-Bordas 1976
[33] Thomas, J.M.: Sur l’analyse num?rique des m?thodes d’?l?ments finis hybrides et mixtes. Th?se d’Etat, Universit? Pierre et Marie Curie, 1977
[34] Strang, G., Fix, G.: An analysis of the finite element method. Prentice Hall, N.J., 1973 · Zbl 0356.65096
[35] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058
[36] Crouzeix, M.: Etude d’une m?thode de lin?arisation. R?solution des ?quations de Stokes stationnaires. Application aux ?quations de Navier-Stokes stationnaires. In: Cahier de l’IRIA, No 12, 139-244, (1974)
[37] Glowinski, R., Pironneau, O.: On numerical methods for the Stokes problem. In: Energy methods in finite element analysis, R. Glowinski, E.Y. Rodin, O.C. Zienkiewic, eds., pp. 243-264. Chichester: John Wiley and Sons 1979 · Zbl 0415.76024
[38] Glowinski, R., Pironneau, O.: Approximation par ?l?ments finis mixtes du probl?me de Stokes en formulation vitesse-pression. Convergence des solutions approch?es. C.R. Acad. Sc. Paris, t.286 A, 181-183 (1978) · Zbl 0377.65056
[39] Bristeau, M.O., Glowinski, R., Periaux, J., Perrier, P., Pironneau, O., Poirier, G.: Application of optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows. Rapport de Recherche No 294, IRIA/LABORIA, 1978 · Zbl 0449.76002
[40] Bristeau, M.O., Glowinski, R., Periaux, J., Perrier, P., Pironneau, O.: On the numerical solution of non-linear problems in fluid dynamics by least squares and finite element methods. (I) Least square formulations and conjugate gradient solution of the continuous problems. Comp. math. Appl. Mech. Engrg.,17/18, Part III, 619-657 (1979) · Zbl 0423.76047 · doi:10.1016/0045-7825(79)90048-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.