×

zbMATH — the first resource for mathematics

Towards the Jantzen conjecture. (English) Zbl 0424.17004

MSC:
17B35 Universal enveloping (super)algebras
17B20 Simple, semisimple, reductive (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] W. Borho : Berechnung der Gelfand-Kirillov-Dimension bei induzierten Darstellungen . Math. Ann., 225 (1977) 177-194. · Zbl 0346.17012 · doi:10.1007/BF01351722 · eudml:162931
[2] W. Borho : Definition einer Dixmier-Abbildung für sl(n, C) . Invent. Math., 40 (1977) 143-169. · Zbl 0346.17014 · doi:10.1007/BF01390343 · eudml:142476
[3] W. Borho : Recent advances in the enveloping algebras of semi-simple Lie algebras . Sém. Bourbaki, n^\circ 489, Nov. 1976. · Zbl 0394.17005 · numdam:SB_1976-1977__19__1_0 · eudml:109903
[4] W. Borho , P. Gabriel and R. Rentschler : Primideale in Einhüllenden auflösbarer Lie-algebren , Lecture Notes in Mathematics, No. 357, Springer-Verlag, Berlin/Heidelberg /New York, 1973. · Zbl 0293.17005
[5] W. Borho and J.C. Jantzen : Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-algebra . Invent. Math., 39 (1977) 1-53. · Zbl 0327.17002 · doi:10.1007/BF01695950 · eudml:142455
[6] W. Borho and H. Kraft : Über die Gelfand-Kirillov-Dimension . Math. Ann., 220 (1976) 1-24. · Zbl 0306.17005 · doi:10.1007/BF01354525 · eudml:162801
[7] W. Borho and R. Rentschler : Oresche Teilmengen in Einhüllenden Algebren . Math. Ann., 217 (1975) 201-210. · Zbl 0297.17004 · doi:10.1007/BF01436171 · eudml:162770
[8] N. Conze : Algèbres d’operateurs différentiels et quotients des algèbres enveloppantes . Bull. Math. Soc. France, 102 (1974) 379-415. · Zbl 0298.17012 · doi:10.24033/bsmf.1786 · numdam:BSMF_1974__102__379_0 · eudml:87235
[9] N. Conze-Berline and M. Duflo : Sur les représentations induites des groupes semi-simple complexes . Compos. Math., 34 (1977) 307-336. · Zbl 0389.22016 · numdam:CM_1977__34_3_307_0 · eudml:89330
[10] J. Dixmier : Algèbres enveloppantes, cahiers scientifiques , XXXVII, Gauthier-Villars, Paris, 1974. · Zbl 0308.17007
[11] J. Dixmier : Polarisations dans les algèbres de Lie, II , Bull. Soc. Math. France, 104 (1976) 145-164. · Zbl 0335.17002 · doi:10.24033/bsmf.1821 · numdam:BSMF_1976__104__145_0 · eudml:87269
[12] M. Duflo : Représentations irréductibles des groupes semi-simples complexes . Lecture Notes in Mathematics, No. 497, Springer-Verlag, Berlin/ Heidelberg/New York, 1975, pp. 26-88. · Zbl 0315.22008
[13] M. Duflo : Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple . Ann. Math., 105 (1977) 107-130. · Zbl 0346.17011 · doi:10.2307/1971027 · www.jstor.org
[14] H. Garnir : Théorie de la représentation linéaire des groupes symétriques . Thèse, Liège, 1950 and Mém. Soc. Roy. Sci. Liège (4) 10 (1950). · Zbl 0045.15801
[15] I.N. Herstein : Noncommutative Rings . Carus mathematical monographs, No. 15 (1968). · Zbl 0177.05801
[16] I.N. Herstein : Topics in ring theory . Chicago lecture notes in mathematics, The University of Chicago Press, 1969. · Zbl 0232.16001
[17] N. Jacobson : Lie algebras . Interscience tracts in pure and applied mathematics, No. 10, New York (1962). · Zbl 0121.27504
[18] J.C. Jantzen : Kontravariante formen auf induzierte Darstellungen halbeinfacher Lie-algebren . Math. Ann., 226 (1977) 53-65. · Zbl 0372.17003 · doi:10.1007/BF01391218 · eudml:162940
[19] J.C. Jantzen : Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren . Math. Z. 140 (1974) 127-149. · Zbl 0288.20059 · doi:10.1007/BF01213951
[20] J.C. Jantzen : Moduln mit einem höchsten Gewicht . Habilitationsschrift, Bonn, 1977. · Zbl 0426.17001
[21] A. Joseph : Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie réductive . Comptes Rendus, A 284 (1977) 425-427. · Zbl 0362.17007
[22] A. Joseph : A characteristic variety for the primitive spectrum of a semisimple Lie algebra, unpublished . (The main results were reported in [21]. A shorter preliminary version appeared in Lecture Notes in Mathematics, No. 587, Springer-Verlag, Berlin/Heidelberg/New York, 1977, pp. 102-118.) · Zbl 0374.17004
[23] A. Joseph : On the annihilators of simple subquotients of the principal series . Ann. Ec. Norm. Sup. 10 (1977) 419-440. · Zbl 0386.17004 · doi:10.24033/asens.1332 · numdam:ASENS_1977_4_10_4_419_0 · eudml:82001
[24] A. Joseph : A preparation theorem for the prime spectrum of a semisimple Lie algebra . J. of Algebra, 48 (1977) 241-289. · Zbl 0405.17007 · doi:10.1016/0021-8693(77)90306-4
[25] A. Joseph : Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules . J. Lond. Math. Soc. 18 (1978) 50-60. · Zbl 0401.17007 · doi:10.1112/jlms/s2-18.1.50
[26] A. Joseph : Gelfand-Kirillov conjecture for induced ideals in the semisimple case . Bull. Math. Soc. France (In the press). · Zbl 0407.17004 · doi:10.24033/bsmf.1889 · numdam:BSMF_1979__107__139_0 · eudml:87341
[27] D.E. Knuth : Permutations, matrices and generalized Young tableaux . Pac. J. Math., 34 (1970) 709-727. · Zbl 0199.31901 · doi:10.2140/pjm.1970.34.709
[28] A. Lascoux : Thèse , Paris VII, 1977.
[29] J. Lepowsky : Uniqueness of embeddings of certain induced modules . Proc. Amer. Math. Soc., 56 (1976) 55-58. · Zbl 0335.17004 · doi:10.2307/2041573
[30] R.W. Richardson : Conjugacy classes in parabolic subgroups of semisimple algebraic groups . Bull. London Math. Soc., 6 (1974) 21-24. · Zbl 0287.20036 · doi:10.1112/blms/6.1.21
[31] C. Schensted : Longest increasing and decreasing subsequences . Canad. J. Math., 13 (1961) 179-191. · Zbl 0097.25202 · doi:10.4153/CJM-1961-015-3
[32] J.-P. Serre : Algèbre Locale Multiplicités . Lecture notes in mathematics, No. 11, Springer-Verlag, Berlin/Heidelberg/ New York, 1965. · Zbl 0142.28603
[33] W. Specht : Die irreduziblen Darstellungen der symmetrischen Gruppe . Math. Z., 39 (1935) 696-711. · Zbl 0011.10301 · doi:10.1007/BF01201387 · eudml:168580
[34] G. Zuckerman : Tensor products of finite and infinite dimensional representations of semisimple Lie groups , preprint, 1977. · Zbl 0384.22004 · doi:10.2307/1971097
[35] R. Hotta and T.A. Springer : A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups . Invent. Math., 41 (1977) 113-127. · Zbl 0389.20037 · doi:10.1007/BF01418371 · eudml:142488
[36] A. Joseph : Primitive ideals in the enveloping algebras of sl(3) and sp(4) , unpublished.
[37] I.G. Macdonald : Some irreducible representations of the Weyl groups , Bull. London Math. Soc., 4 (1972) 148-150. · Zbl 0251.20043 · doi:10.1112/blms/4.2.148
[38] T.A. Springer : Trigonometric sums, Green functions of finite groups and representations of Weyl groups . Invent Math., 36 (1976) 173-207. · Zbl 0374.20054 · doi:10.1007/BF01390009 · eudml:142418
[39] A. Joseph and L.W. Small : An additivity principle for Goldie rank . Israel J. Math. 31 (1978) 105-114. · Zbl 0395.17010 · doi:10.1007/BF02760541
[40] D.A. Vogan : Gelfand-Kirillov dimension for Harish-Chandra modules , Invent. 48 (1978) 75-98. · Zbl 0389.17002 · doi:10.1007/BF01390063 · eudml:142585
[41] W.M. Beynon and G. Lusztig : Some numerical results on the characters of exceptional Weyl groups , preprint, Warwick, 1978. · Zbl 0416.20033 · doi:10.1017/S0305004100055249
[42] Dz. Hadziev : Some questions in the theory of invariants (In Russian) , Mat. Sb. 72 (1967) 420-435. · Zbl 0182.05402 · doi:10.1070/SM1967v001n03ABEH001988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.