Joseph, A. Towards the Jantzen conjecture. II. (English) Zbl 0424.17005 Compos. Math. 40, 69-78 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 9 Documents MSC: 17B35 Universal enveloping (super)algebras 17B20 Simple, semisimple, reductive (super)algebras 17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) Keywords:Jantzen conjecture; primitive ideals; representation of Weyl group; Goldie rank × Cite Format Result Cite Review PDF Full Text: Numdam EuDML References: [1] W. Borho : Recent advances in the enveloping algebras of semi-simple Lie algebras . Sem. Bourbaki, no. 489, Nov. 1976. · Zbl 0394.17005 [2] W. Borho and J.C. Jantzen : Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie algebra . Invent. Math., 39 (1977) 1-53. · Zbl 0327.17002 · doi:10.1007/BF01695950 [3] W. Borho and J.C. Jantzen : (unpublished). [4] M. Duflo : Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple . Ann. Math., 105 (1977) pp. 107-130. · Zbl 0346.17011 · doi:10.2307/1971027 [5] N. Jacobson : Structure of Rings . Amer. Math. Soc. Colloq. Publ., Vol. XXXVII, 1974. [6] A. Joseph : A characteristic variety for the primitive spectrum of a semisimple Lie algebra, (unpublished) . Short version in LN 587 (1977) pp. 102-118. · Zbl 0374.17004 [7] A. Joseph : Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules . J. Lond. Math. Soc., 18 (1978) pp. 50-60. · Zbl 0401.17007 · doi:10.1112/jlms/s2-18.1.50 [8] A. Joseph : Towards the Jantzen conjecture . Compositio Math. 40 (1980) 35-67. · Zbl 0424.17004 [9] A. Joseph and L.W. Small : An additivity principle for Goldie rank . Israel J. Math. 31 (1978) 105-114. · Zbl 0395.17010 · doi:10.1007/BF02760541 [10] W. Borho , P. Gabriel and R. Rentschler : Primideale in Einhüllenden auflösbarer Lie-algebren , LN 357, Springer-Verlag, Berlin-Heidelberg-New York, 1973. · Zbl 0293.17005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.