×

zbMATH — the first resource for mathematics

Embedding theorems for residually finite groups. (English) Zbl 0424.20028

MSC:
20E26 Residual properties and generalizations; residually finite groups
20E07 Subgroup theorems; subgroup growth
20F05 Generators, relations, and presentations of groups
20F50 Periodic groups; locally finite groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bass, H.: Euler characteristics and characters of discrete groups. Invent. Math.35, 155-196 (1976) · Zbl 0365.20008
[2] Golod, E.S.: On nil-algebras and residually finitep-groups. Izv. Akad. Nauk SSSR Ser. Mat.28, 273-276 (1964); Amer. Math. Soc. Transl. (2)48, 102-106 (1965)
[3] Hickin, K.: An embedding theorem for periodic groups. J. London Math. Soc. (2)14, 63-64 (1976) · Zbl 0351.20027
[4] Higman, G., Neumann, B.H., Neumann, H.: Embedding theorems for groups. J. London Math. Soc.24, 247-254 (1949) · Zbl 0034.30101
[5] Neumann, B.H., Neumann, H.: Embedding theorems for groups. J. London Math. Soc.34, 465-479 (1959) · Zbl 0102.26401
[6] Neumann, P.M.: On the structure of standard wreath products of groups. Math. Z.84, 343-373 (1964) · Zbl 0122.02901
[7] Phillips, R.E.: Embedding methods for periodic groups. Proc. London Math. Soc. (3)35, 238-256 (1977) · Zbl 0365.20041
[8] Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Part II. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0243.20032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.