A new setting for potential theory. I. (English) Zbl 0424.31004


31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
31D05 Axiomatic potential theory
Full Text: DOI Numdam EuDML


[1] R.M. BLUMENTHAL and R.K. GETOOR, Markov processes and potential theory, Academic Press, 1968. · Zbl 0169.49204
[2] K.L. CHUNG, Probabilistic approach in potential theory to the equilibrium problem, Ann. Inst. Fourier, 23, 3 (1973), 313-322. · Zbl 0258.31012
[3] G.A. HUNT, Markoff processes and potentials I, Illinois J. Math., 1 (1957), 43-93. · Zbl 0100.13804
[4] P.A. MEYER, Probabilités et potentiel, Hermann, 1966. · Zbl 0138.10402
[5] P.A. MEYER, Processus de Markov : la frontière de martin, Lecture Notes in Mathematics No. 77, Springer-Verlag, (1968). · Zbl 0174.49303
[6] P.A. MEYER, Deux petits résultats de théorie du potentiel, Séminaire de Probabilités V, Lecture Notes in Mathematics No. 191, Springer-Verlag (1971), 211-212.
[7] P.A. MEYER, Le retournement du temps, d’après Chung et Walsh, Séminaire de Probabilités V, Lecture Notes in Mathematics No. 191, Springer-Verlag (1971), 213-236.
[8] G. MOKOBODZKI, Densité relative de deux potentiels comparables, Séminaire de Probabilités IV, Lecture Notes in Mathematics No. 124, Springer-Verlag (1970), 170-194. · Zbl 0218.31014
[9] K.M. RAO, Excessive functions as potentials of measures, J. London Math. Soc., 16 (1977), 165-171. · Zbl 0369.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.