×

zbMATH — the first resource for mathematics

Homogeneous Hessian manifolds. (English) Zbl 0424.53023

MSC:
53C30 Differential geometry of homogeneous manifolds
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S.G. GINDIKIN, I.I. PJATECKII-SAPIRO and E.B. VINBERG, Homogeneous Kähler manifolds, in “Geometry of Homogeneous Bounded Domains”, Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87. · Zbl 0183.35401
[2] P. DOMBROWSKI, On the geometry of the tangent bundles, J. Reine Angew. Math., 210 (1962), 73-88. · Zbl 0105.16002
[3] M. GOTO, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 1-13. · Zbl 0041.36001
[4] J. HELMSTETTER, Doctorat de 3e cycle “Radical et groupe formel d”une algèbre symétrique à gauche” novembre 1975, Grenoble.
[5] S. KOBAYASHI, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. of Tokyo, IA 24 (1977), 129-135. · Zbl 0367.53002
[6] J.L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. · Zbl 0144.34002
[7] J.L. KOSZUL, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. · Zbl 0173.50001
[8] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. · Zbl 0332.53032
[9] H. SHIMA, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. · Zbl 0349.53036
[10] H. SHIMA, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978) 509-513. · Zbl 0415.53032
[11] J. VEY, Une notion d’hyperbolicité sur LES variétés localement plates, C.R. Acad. Sci. Paris, 266 (1968), 622-624. · Zbl 0155.30602
[12] E.B. VINBERG, The morozov-Borel theorem for real Lie groups, Soviet Math. Dokl., 2 (1961), 1416-1419. · Zbl 0112.02505
[13] E.B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. · Zbl 0138.43301
[14] E.B. VINBERG and S.G. GINDIKIN, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 75 (116) (1967), 333-351. · Zbl 0172.37803
[15] K. YOSHIDA, A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84. · JFM 63.1000.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.