×

Some counter-examples in the theory of the Galois module structure of wild extensions. (English) Zbl 0425.12009


MSC:

11R32 Galois theory
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16S34 Group rings
11R52 Quaternion and other division algebras: arithmetic, zeta functions
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] [1] and , Class Field Theory, Benjamin, New York, 1967. · Zbl 0176.33504
[2] [2] , Un Contre-exemple à une conjecture de J. Martinet, in ’Algebraic Number Fields’, ed. Fröhlich, Acad. Press, New York, 1977. · Zbl 0358.12006
[3] [3] , Une propriété de l’anneau des entiers des extensions galoisiennes non-abéliennes de degré pq des rationnels, to appear in Compositio Mathematica. · Zbl 0431.12005
[4] [4] , Locally free modules over arithmetic orders, J. Reine Angew. Math., 274/275 (1975), 112-138. · Zbl 0316.12013
[5] [5] , Galois Module Structure, in Algebraic Number Fields, ed. Fröhlich, Acad. Press 1977. · Zbl 0346.12006
[6] [6] , Representations of twisted group rings, Thesis, Princeton University, 1963.
[7] [7] , K-Theory for twisted group rings, Proc. London Math. Soc., (3) 29 (1974), 257-271. · Zbl 0317.16012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.