×

Sommes de commutateurs dans les algèbres de von Neumann finies continues. (German) Zbl 0425.46046


MSC:

46L35 Classifications of \(C^*\)-algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] M. BROISE, Commutateurs dans le groupe unitaire d’un facteur, J. Math. pures et appl., 46 (1967), 299-312. · Zbl 0191.42703
[2] A. BROWN et C. PEARCY, Structure of commutators of operators, Ann. Math., 82 (1965), 112-127. · Zbl 0131.12302
[3] A. BROWN et C. PEARCY, Commutators in factors of type III, Canad. J., 18 (1966), 1152-1160. · Zbl 0166.11501
[4] A. CONNES, Periodic automorphisms of the hyperfinite factor of type II1, Acta. Sci. Math., 39 (1977), 39-66. · Zbl 0382.46027
[5] H.G. DALES, Automatic continuity: a survey, Bull. London Math. Soc., 10 (1978), 129-183. · Zbl 0391.46037
[6] D. DECKARD et C. PEARCY, On continuous matrix — valued functions on a Stonian space, Pac. J. Math., 14 (1964), 857-869. · Zbl 0172.41304
[7] J. DIXMIER, Sous-anneaux abéliens maximaux dans LES facteurs de type fini, Ann. Math., 59 (1954), 279-286. · Zbl 0055.10702
[8] J. DIXMIER, LES algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), 2ème édition - Gauthier-Villars 1969. · Zbl 0175.43801
[9] Th. FACK, Sur la notion de valeur caractéristique, Préprint.
[10] H. HALPERN, Commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc., 139 (1969), 55-73. · Zbl 0176.11403
[11] H. HALPERN, Essential central range and self-adjoint commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc., 228 (1972), 117-146. · Zbl 0356.46056
[12] P. de la HARPE, LES extensions de gl(E) par un noyau de dimension finie sont triviales, J. Functional Analysis, 33 (1979), 362-373. · Zbl 0428.17007
[13] R.A. HOWLAND, Lie isomorphisms of derived rings of simple rings, Trans. Amer. Math. Soc., 145 (1969), 383-396. · Zbl 0201.03903
[14] I.N. HERSTEIN, Topics in ring theory, Chicago Lectures in Mathematics, 1969. · Zbl 0232.16001
[15] I.N. HERSTEIN, Lie and Jordan structures in simple associative rings, Bull. Amer. Math. Soc., 67 (1961), 517-531. · Zbl 0107.02704
[16] C. LANSKI, Group of units of a simple ring, J. of algebra, 16 (1970), 108-28. · Zbl 0199.35402
[17] A. LIEBERMANN, Adjoint representations of factor groups, Michigan Math. J., 24 (1977), 109-113. · Zbl 0344.46129
[18] C.R. MIERS, Lie derivations of von Neumann algebras, Duke Math. J., 40 (1973), 403-409. · Zbl 0264.46064
[19] C.R. MIERS, Derived ring isomorphisms of von Neumann algebras, Canad. J. Math., 25 (1973), 1254-1268. · Zbl 0268.46054
[20] F.J. MURRAY et J. von NEUMANN, On rings of operators, Ann. of Math., 37 (1936), 116-229. · JFM 62.0449.03
[21] C. PEARCY et D. TOPPING, Sums of small numbers of idempotents, Michigan Math. J., 14 (1968), 453-465. · Zbl 0156.38102
[22] C. PEARCY et D. TOPPING, Commutators and certain II1-factors, J.F.A., 3 (1969), 69-78. · Zbl 0174.18704
[23] C. PEARCY et D. TOPPING, On commutators in ideals of compact operators, Michigan Math. J., 18 (1971), 247-252. · Zbl 0226.46066
[24] D. RUELLE, Statistical mechanics, Benjamin (1969).
[25] S. SAKAI, C*-algebras and W*-algebras, Springer, 1971. · Zbl 0219.46042
[26] K. SHODA, Einige Sätze über matrizen, Jap. J. Math., 13 (1936), 395-406.
[27] H. SUNOUCHI, Infinite Lie rings, Tohoku Math. J., 8 (1956). 291-307. · Zbl 0074.09904
[28] D. TOPPING, Transcendental quasi-nilpotents in operator algebras, J.F.A., 2 (1968), 342-351. · Zbl 0183.42402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.