On the control of care supply and demand in a urology department. (English) Zbl 0425.90058


90B99 Operations research and management science
60K15 Markov renewal processes, semi-Markov processes
90C90 Applications of mathematical programming
Full Text: DOI


[1] Aoki, M., Optimization of Stochastic Systems (1967), Academic Press: Academic Press New York
[2] Collart, D.; Haurie, A., On a suboptimal control of a hospital inpatient admission system, IEEE Trans. Automatic Control AC-21, 233-238 (April 1976)
[3] Dion, J. P.; Gautier, D., Estimation des paramètres du processus semi-Markovien de l’évolution intra-hospitalière des coronariens, (Actes du Colloque sur la Théorie des Systèmes et la Gestion Scientifique des Services Publics (1975), Centre de Recherches Mathématiques, Université de Montréal, et Ecole des Hautes Etudes Commerciales de Montréal)
[4] Kao, E. P.C., A semi-Markov model to predict recovery progress of coronary patients, Health Services Res., 191-208 (1972)
[5] Kao, E. P.C., A semi-Markovian population model with application to hospital planning, IEEE Trans. Systems Man Cybernet., SMC-3, 327-336 (April 1973)
[6] Offensend, F. L., A hospital admission system based on nursing work load, Management Sci., 19, 2, 132-138 (1972)
[7] Smallwood, R. D.; Murray, G. E.; Silva, D. D.; Sondik, E. F.; Klainer, L. M., A medical service requirements model for health system design, (Proc. IEEE, 57 (November 1969)), 1880-1887
[8] Wagner, H. M., Principles of Operations Research (1969), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[9] Warner, D. M., A two-phase model for scheduling nursing personnel in a hospital, (Ph.D. Dissertation (1971), Tulane University: Tulane University New Orleans) · Zbl 0246.90022
[10] Warner, D. M.; Prawda, J., Mathematical programming model for scheduling nursing personnel, Management Sci., 19, 4, 411-412 (1972) · Zbl 0246.90022
[11] Wolfe, H., Staffing the nursing unit: controlled variable staffing, Nursing Res., 14, 236-245 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.