zbMATH — the first resource for mathematics

Distinguished representations and modular forms of half-integral weight. (English) Zbl 0426.10027

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F11 Holomorphic modular forms of integral weight
22E50 Representations of Lie and linear algebraic groups over local fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
Full Text: DOI EuDML
[1] [Ariturk] Ariturk, H.: On the composition series of principal series representations of a 3-fold covering group ofSL(2,k), preprint, 1978 · Zbl 1235.58019
[2] [BoJa] Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. In: Proc. Symp. Pure Math., Vol. 33, Part 1, pp. 189-202. A.M.S. 1979 · Zbl 0414.22020
[3] [De] Deligne, P.: Formes modularies et représentations deGL 2. In: Springer Lecture Notes, Vol. 349, 1973
[4] [De2] Deligne, P.: La Conjecture de Weil, I. Pub. I.H.E.S.,43, 273-307 (1974)
[5] [De3] Deligne, P.: Sommes de Gauss Cubiques et Revêtements deSL(2). Séminaire Bourbaki, No. 539, 1978/79
[6] [Flick] Flicker, Y.: Automorphic forms on covering groups ofGL(2). Invent. Math. in press (1980)
[7] [Ge] Gelbart, S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Springer Lecture Notes, Vol. 530, 1976 · Zbl 0365.22017
[8] [GeHPS] Gelbart, S., Howe, R., Piatetski-Shapiro, I.: Existence and Uniqueness of Whittaker Models for the Metaplectic Group. Israel J. Math. Vol. 34 (1979) · Zbl 0441.22015
[9] [GePS] Gelbart, S., Piatetski-Shapiro, I.: On Shimura’s correspondence for modular forms of half-integral weight. In: Proceedings, Colloquium on Automorphic Forms, Representation Theory and Arithmetic, Bombay, 1979 · Zbl 0495.10020
[10] [GeSa] Gelbart, S., Sally, P.J.: Intertwining operators and automorphic forms for the metaplectic group. P.N.A.S., U.S.A.,72, 1406-1410 (1975) · Zbl 0303.22010 · doi:10.1073/pnas.72.4.1406
[11] [Go] Godement, R.: Notes on Jacquet-Langlands Theory. Institute for Advanced study, Princeton, 1970
[12] [GGPS] Gelfand, I., Graev, M., Piatetski-Shapiro, I.: Representation Theory and Automorphic Functions. Philadelphia: W.B. Saunders Co. 1969
[13] [Go2] Godement, R.: Travaux de Hecke II. Séminaire Bourbaki, No. 59, 1951/1952
[14] [Hecke] Hecke, E.: Mathematische Werke, Göttingen, 1959
[15] [Ho] Howe, R.: ?-series and automorphic forms. In: Proceedings of Symposia in Pure Math. Vol. 33, Part 1, pp. 275-286, A.M.S., 1979
[16] [Ja] Jacquet, H.: Automorphic Forms onGL(2): Part II. Springer Lecture Notes, Vol. 278, 1972
[17] [JL] Jacquet, H., Langlands, R.P.: Automorphic Forms onGL(2). Springer Lecture Notes, Vol. 114, 1970
[18] [Kubota] Kubota, T.: Automorphic functions and the Reciprocity Law in a Number Field, Kyoto Univ. Press, 1969 · Zbl 0231.10017
[19] [Kub2] Kubota, T.: Some Number-Theoretical Results on Real Analytic Automorphic Forms. In: Lecture Notes in Mathematics, Vol. 185, 87-96, Springer-Verlag 1971
[20] [La] Langlands, R.P.: Automorphic Representations, Shimura Varieties, and motives: Ein Märchen. In: Proc. Symp. Pure Math., Vol. 33, Part 2, 204-246. A.M.S., 1979 · Zbl 0447.12009
[21] [Mackey] Mackey, G.: Unitary representations of group extensions I. Acta Math.99, 265-311 (1958) · Zbl 0082.11301 · doi:10.1007/BF02392428
[22] [Mackey 2] Mackey, G.: Induced Representations of Locally Compact Groups and Applications. In: Functional Analysis and Related Fields (F. Browder, ed.). Berlin-Heidelberg-New York: Springer-Verlag 1970 · Zbl 0216.39904
[23] [MOS] Magnus, W., Oberhettinger, F., Soni, R.: Formulas and Theorems for the Special Functions of Mathematical Physics. New York: SpringerVerlag 1966 · Zbl 0143.08502
[24] [Mei] Meister, J.: Cornell University Thesis, 1979
[25] [Moen] Moen, C.: Univ. of Chicago Thesis, 1979
[26] [Moore] Moore, C.: Group extensions ofp-adic linear groups. Pub. I.H.E.S., No. 35, 1968 · Zbl 0159.03203
[27] [Niwa] Niwa, S.: Modular forms of half-integral weight and the integral of certain functions. Nagoya J. Math.56, 147-161 (1975) · Zbl 0303.10027
[28] [Patt] Patterson, S.J.: A cubic analogue of the theta-series, I, II, J. Crelle 296, 125-161 and 217-220 (1977) · Zbl 0358.10011
[29] [PS] Piatetski-Shapiro, I.I.: Distinguished representations and Tate Theory for a reductive group. Proceedings. ICM, Helsinki, 1978
[30] [RS] Rallis, S., Schiffmann, G.: Représentations supercuspidales de groupe métaplectique, J. Math. Kyoto Univ., 17, 143-179 (1977)
[31] [Se-St] Serre, J-P., Stark, H.: Modular forms of weight 1/2. In: Springer Lecture Notes, Vol. 627, 1977
[32] [Shalika] Shalika, J.: Representations of the two-by-two unimodular group over local fields. Thesis, Johns Hopkins, University, 1966 · Zbl 1076.11032
[33] [Sha-Tan] Shalika, J., Tanaky, S.: On an explicit construction of a certain class of automorphic forms. Amer. J. Math.91, 1043-1076 (1969) · Zbl 0217.43302 · doi:10.2307/2373316
[34] [Shim] Shimura, G.: On modular forms of half-integral weight. Ann. Math.97, 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[35] [Shin] Shintani, T.: On the construction of holomorphic cusp forms of half-integral weight. Nagoya Math. J.58, 83-126 (1975) · Zbl 0316.10016
[36] [Tate] Tate, J.: On Fourier analysis in number fields and Hecke’s zeta functions. In: Algebraic Number Theory (J. Cassels and A. Fröhlich, eds.). Washington D.C.: Thompson Publishing Co. 1967
[37] [Vignéras] Vignéras, M.-F.: Facteurs gamma et équations fonctionnelles. In: Springer Lecture Notes, Vol. 627, 1977
[38] [Wald] Waldspurger, J.L.: Correspondances de Shimura et Shintani, preprint, 1979
[39] [We] Weil, A.: Sur certains groups d’opératuers unitaires. Acta Math.111, 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
[40] [WeB] Weil, A.: Zeta-functions and distributions. Seminaire Bourbaki, No. 312, 1965-1966
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.