zbMATH — the first resource for mathematics

On the arithmetic of special values of L functions. (English) Zbl 0426.14009

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G05 Rational points
14G25 Global ground fields in algebraic geometry
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
Full Text: DOI EuDML
[1] Birch, B.J.: Elliptic curves, a progress report. Proceedings of the 1969 Summer Institute on Number Theory, Stoney Brook, New York AMS, pp. 396-400, 1971 · Zbl 0214.19801
[2] Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory. London-New York: Academic Press 1967 · Zbl 0153.07403
[3] Deligne, P., Rapoport, M.: Schémas de modules des courbes elliptiques. Vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972). Lecture Notes in Mathematics349. Berlin-Heidelberg-New York: Springer 1973
[4] Ferrero, B., Greenberg, R.: On the behavior ofp-acidL-functions ats=0. Invent. Math.,50, 91-102 (1978) · Zbl 0441.12003 · doi:10.1007/BF01406470
[5] Ferrero, B., Washington, L.: The Iwasawa invariant? p vanishes for abelian number fields. Annals of Math.,109, 377-395 (1979) · Zbl 0443.12001 · doi:10.2307/1971116
[6] Goldfeld, D., Viola, C.: Mean values ofL-functions associated to elliptic, Fermat and other curves at the centre of the critical strip. In press (1979) · Zbl 0409.10029
[7] Grothendieck, A.: Modèles de Néron et monodromie exp IX. Lecture Notes in Mathematics288, Berlin-Heidelberg-New York: Springer 1972
[8] Manin, Y.: Parabolic points and zeta functions of modular forms [in Russian], Izv. Akad. Nauk. CCCP,36, 19-65 (1972) · Zbl 0243.14008
[9] Mazur, B.: Courbes elliptiques et symboles modulaires. Séminaire Bourbaki, No. 414, Lecture Notes in Mathematics, No.317, Berlin-Heidelberg-New York: Springer 1973 · Zbl 0276.14012
[10] Mazur, B.: Rational points on abelian varieties with values in towers of number fields, Inventiones Math.,18, 183-266 (1972) · Zbl 0245.14015 · doi:10.1007/BF01389815
[11] Mazur, B.: Rational points on modular curves. Proceedings of a conference on modular functions held in Bonn 1976. Lecture Notes in Math.,601, Berlin-Heidelberg-New York: Springer 1977
[12] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S.47, 33-189 (1977) · Zbl 0394.14008
[13] Mazur, B.: Rational Isogenies of Prime Degree. Inventiones Math.,14, 129-162 (1978) · Zbl 0386.14009 · doi:10.1007/BF01390348
[14] Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Inventiones Math.25, 1-61 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[15] Rademacher, H.: Topics in Analytic Number Theory. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0253.10002
[16] Rademacher, H.: Collected Papers, Volume I, Cambridge: M.I.T. Press 1974 · Zbl 0311.01022
[17] Schoeneberg, B.: Elliptic Modular Functions. New York-Heidelberg-Berlin: Springer-Verlag 1974 · Zbl 0285.10016
[18] Serre, J-P., Tate, J.: Good reduction of abelian varieties, Ann. of Math.88, 492-517 (1968) · Zbl 0172.46101 · doi:10.2307/1970722
[19] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, No.11, Tokyo-Princeton, 1971 · Zbl 0221.10029
[20] Washington, L.C.: Class numbers andZ p -extensions. Math. Ann.214, 177-193 (1975) · Zbl 0302.12007 · doi:10.1007/BF01352651
[21] Washington, L.: The nonp-part of the class number in a cyclotomicZ p -extension. Invent. Math.,49, 87-97 (1978) · Zbl 0403.12007 · doi:10.1007/BF01399512
[22] Wiles, A.: On modular curves and the class group ofQ(? p ). Inventiones Math., in press (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.