Bérard, Pierre; Besson, Gérard Spectres et groupes cristallographiques. II: Domaines sphériques. (Spectra and crystallographic groups. II: Spherical domains). (French) Zbl 0426.35073 Ann. Inst. Fourier 30, No. 3, 237-248 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 15 Documents MSC: 35P05 General topics in linear spectral theory for PDEs 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35Q99 Partial differential equations of mathematical physics and other areas of application Keywords:spectrum; Laplacian; spherical domains; Coxeter groups × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [1] , Spectres et groupes cristallographiques I : Le cas euclidien, Inventiones Math., 58 (1980), 179-199. · Zbl 0434.35068 [2] [2] , , , Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, n° 194, Springer. · Zbl 0223.53034 [3] [3] , Groupes et algèbres de Lie, Chap. 4 à 6, Hermann. · Zbl 0483.22001 [4] C. CLARK, The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems, Siam Review, 9 (1967), 627-646.0159.1970458 #23164 · Zbl 0159.19704 [5] [5] , Uber die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebeite auf der Kugeloberfläche, Math. Z., 94 (1966), 110-121. · Zbl 0146.35002 [6] [6] , Weyl’s conjecture on manifolds with concave boundary, Proc. Symp. Pure Math., Vol. 36, AMS, Providence 1980. · Zbl 0436.58024 [7] [7] , On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11 (1961), 419-433. · Zbl 0107.41805 [8] T.A. SPRINGER, Invariant theory, Lecture Notes in Math., n° 585, Berlin-Herdelberg-New York, Springer, 1977.0346.2002056 #5740 · Zbl 0346.20020 [9] E. STEIN and G. WEISS, Fourier analysis on euclidian spaces, Princeton University Press.0232.42007 · Zbl 0232.42007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.