Cormack, W. J.; Hall, G. S. Riemannian curvature and the classification of the Riemann and Ricci tensors in space-time. (English) Zbl 0426.53020 Int. J. Theor. Phys. 18, 279-289 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 8 Documents MSC: 53B30 Local differential geometry of Lorentz metrics, indefinite metrics 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 83C99 General relativity Keywords:sectional curvature; Petrov classification of gravitational fields; Ricci tensor Citations:Zbl 0172.570 PDFBibTeX XMLCite \textit{W. J. Cormack} and \textit{G. S. Hall}, Int. J. Theor. Phys. 18, 279--289 (1979; Zbl 0426.53020) Full Text: DOI References: [1] Bel, L. (1962).Cahier de Physique,16, 59. [2] Brickell, F., and Clarke, R. S. (1970).Differentiable Manifolds. Van Nostrand, Reinhold, London. [3] Cormack, W. J., and Hall, G. S. (1979).Journal of Physics A,12, 55. · Zbl 0401.53008 · doi:10.1088/0305-4470/12/1/016 [4] Ehlers, J., and Kundt, W. (1962). InGravitation, L. Witten, ed, Wiley, New York. [5] Eisenhart, L. P. (1966).Riemannian Geometry. Princeton University Press, Princeton. · Zbl 0174.53303 [6] Hall, G. S. (1976).Journal of Physics A,9, 541. · Zbl 0326.15009 · doi:10.1088/0305-4470/9/4/010 [7] Hall, G. S. (1978).Zeitschrift für Naturforschung,33a, 559. [8] Milnor, J. (1963).Morse Theory. Princeton University Press, Princeton, New Jersey. · Zbl 0108.10401 [9] Petrov, A. Z. (1969).Einstein Spaces. Pergamon Press, New York. · Zbl 0174.28305 [10] Plebanski, J. (1964).Acta Physica Polonica,26, 963. [11] Sachs, R. K. (1961).Proceedings of the Royal Society of London,A264, 309. · Zbl 0098.19204 [12] Thorpe, J. A. (1969).Journal of Mathematical Physics,10, 1. · Zbl 0172.57004 · doi:10.1063/1.1664746 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.