×

A remark on the comparison of Mackey and Segal models. (English) Zbl 0426.60098


MSC:

60K99 Special processes
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81P20 Stochastic mechanics (including stochastic electrodynamics)
82B10 Quantum equilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] GUDDER S. P., BOYCE S.: A comparison of the Mackey and Segal models for quantum mechanics. Int. J. Theoret. Phys., 3, 1970, 7-21.
[2] PLYMEN R.: C* - Algebras and Mackey’s axioms. Commun. math. Phys., 8, 1969, 132-146. · Zbl 0155.45902 · doi:10.1007/BF01645801
[3] DAVIES E. B.: On the Borel structure of C*-algebras. Commun. math. Phys. 8, 1968, 147-163. · Zbl 0153.44701 · doi:10.1007/BF01645802
[4] ROBERTS J. E., ROOEPSTORFF G.: Some basic concepts of algebraic quantum theory. Commun. math. Phys. 11, 1969, 321-328. · Zbl 0167.55806
[5] GUDDER S. P.: Uniqueness and existence properties of bounded observables. Pacific J. Math., 19, 1966, 81-93. · Zbl 0149.23603 · doi:10.2140/pjm.1966.19.81
[6] DELIYANNIS P. C.: Theory of observables. J. Math. Phys., 10, 1969, 2114-2127. · Zbl 0194.28901 · doi:10.1063/1.1664810
[7] DELIYANNIS P. C.: Imbedding of Segal systems. J. Math. Phys., 16, 1975, 163-170.
[8] MACZINŚKI M. J.: On a functional representation of the lattice of projections on a Hilbert space. Studia mathem., XLVII, 1973, 253-259.
[9] MACKEY G. W.: Mathematical Foundations of Quantum Mechanics. New York 1963. · Zbl 0114.44002
[10] MACZINŚKI M. J.: A remark on Mackeyś axiom system for quantum mechanics. Bull. Acad. Polon. Sci. XV, 1967, 583-587. · Zbl 0203.00801
[11] SEGAL I. E.: Postulates for general quantum mechanics. Ann. of Math. 48, 1947, 930-948. · Zbl 0034.06602 · doi:10.2307/1969387
[12] SHERMAN S.: On Segaľs s postulates for general quantum mechanics. Ann. of Math. 64, 1956, 593-601. · Zbl 0075.21802 · doi:10.2307/1969605
[13] EMCH G. G.: Allgebraic Methods in Statistical Mechanics and Quantum Field Theory. New York 1972. · Zbl 0235.46085
[14] ZIERLER N.: Axioms for nonrelativistic quantum mechanics. Pac. J. Math. 11, 1961, 1151-1169. · Zbl 0138.44503 · doi:10.2140/pjm.1961.11.1151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.