Doubly deterministic tabled OL systems. (English) Zbl 0426.68073


68Q45 Formal languages and automata
Full Text: DOI


[1] K. Culik, II, ?The decidability ofv-local catenativity and of other problems of DOL systems,?Inf. Process. Lett. 7(1):33?35 (1978). · Zbl 0369.68044
[2] A. Ehrenfeucht and G. Rozenberg, ?On Simplifications of PDOL Systems,? Proceedings of the Conference on Theoretical Computer Science, Waterloo (1977), pp. 81?87. · Zbl 0414.68046
[3] G. T. Herman and G. Rozenberg,Developmental Systems and Languages (North-Holland, New York, 1975). · Zbl 0306.68045
[4] A. Lindenmayer, ?Adding Continuous Components toL-Systems,? inL-Systems, G. Rozenberg and A. Salomaa, eds. (Springer-Verlag, New York, 1974), pp. 53?68.
[5] A. Lindenmayer, personal communications (1977).
[6] A. Lindenmayer and G. Rozenberg, eds.,Automatic, languages, development, At the crossroads of biology, mathematics and computer science (North-Holland, New York, 1976).
[7] G. Rozenberg, ?The equivalence problem for deterministic TOL systems is undecidable,?Inf. Process. Lett. 1:201?204, errata, 252 (1972). · Zbl 0267.68033
[8] G. Rozenberg, ?TOL systems and languages,?Inf. Control 23:357?381 (1973). · Zbl 0273.68055
[9] G. Rozenberg and A. Lindenmayer, ?Developmental systems with locally catenative formulas,?Acta Inf. 2:214?248 (1973). · Zbl 0304.68076
[10] G. Rozenberg and A. Salomaa, ?The Mathematical Theory ofL Systems,? Chapter 4in Advances in Information Systems Science, Vol. 6, J. Tou, ed. (Plenum Press, New York, 1976).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.