zbMATH — the first resource for mathematics

On the fundamental group of a unirational 3-fold. (English) Zbl 0427.14014

14J30 \(3\)-folds
14E20 Coverings in algebraic geometry
14F30 \(p\)-adic cohomology, crystalline cohomology
14F45 Topological properties in algebraic geometry
Full Text: DOI EuDML
[1] Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. London math. Soc.25, 75-95 (1972) · Zbl 0244.14017
[2] Berthelot, P.: Cohomologie cristalline des Schémas de caractéristiquep>0. Lecture Notes in Math. No. 407. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0298.14012
[3] Spencer Bloch: AlgebraicK-theory and crystalline cohomology. To appear in Publ. Math. I.H.E.S.
[4] Grothendieck, A.: Revêtements étales et groupe fondamental (SGA 1). Lecture Notes in Math. No. 224. Berlin-Heidelberg-New York: Springer 1970
[5] Grothendieck, A.: Le Groupe de Brauer III, in Dix Exposés sur la Cohomologie des Schémas. Amsterdam: North Holland 1968
[6] Grothendieck, A., Dieudonne, J.: Eléments de Géométrie Algébrique (EGA 4), Publ. Math. I.H.E.S. No. 28, 1966
[7] Illusie, L.: Cohomologie Cristalline, Sém. Bourbaki 1974/75, exposé 456
[8] Katz, N., Messing, W.: Some consequences of the Riemann hypothesis for algebraic varieties over finite fields. Inventiones math.23, 73-77 (1974) · Zbl 0275.14011
[9] Katz, N.: Une formule des congruence pour la fonctions. In: SGA 7, Lecture Notes in Math. No. 304. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0275.14015
[10] Mumford, D.: Abelian Varieties. Oxford: University Press 1970 · Zbl 0223.14022
[11] Serre, J.-P.: Corps Locaux. Paris: Hermann 1968
[12] Serre, J.-P.: On the fundamental group of a unirational variety. Journal of the London math. Soc.14, 481-484 (1959) · Zbl 0097.36301
[13] Serre, J.-P.: Sur la topologie des variétiés algébriques en caractéristique. Symp. Int. de Top. Alg. Mexico 1958
[14] Shioda, T.: An example of unirational surfaces in charp. Math. Ann.211, 233-236 (1974) · Zbl 0283.14009
[15] Shioda, T.: On unirationality of supersingular surfaces. To appear · Zbl 0341.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.