×

zbMATH — the first resource for mathematics

Results on weighted norm inequalities for multipliers. (English) Zbl 0427.42004

MSC:
42B15 Multipliers for harmonic analysis in several variables
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. P. Calderón, Mary Weiss, and A. Zygmund, On the existence of singular integrals, Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 56 – 73.
[2] A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101 – 171. · Zbl 0355.46021 · doi:10.1016/S0001-8708(77)80016-9 · doi.org
[3] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241 – 250. · Zbl 0291.44007
[4] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97 – 101. · Zbl 0356.44003
[5] C. Fefferman and E. M. Stein, \?^\? spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137 – 193. · Zbl 0257.46078 · doi:10.1007/BF02392215 · doi.org
[6] I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. No. 15 (1955), 65. · Zbl 0067.04102
[7] Lars Hörmander, Estimates for translation invariant operators in \?^\? spaces, Acta Math. 104 (1960), 93 – 140. · Zbl 0093.11402 · doi:10.1007/BF02547187 · doi.org
[8] Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227 – 251. · Zbl 0262.44004
[9] P. Jones, (to appear).
[10] Makoto Kaneko and Shigeki Yano, Weighted norm inequalities for singular integrals, J. Math. Soc. Japan 27 (1975), no. 4, 570 – 588. · Zbl 0309.44004 · doi:10.2969/jmsj/02740570 · doi.org
[11] Paul Krée, Sur les multiplicateurs dans \cal\?\?^\? avec poids, Ann. Inst. Fourier (Grenoble) 16 (1966), 91 – 121. · Zbl 0145.38402
[12] D. Kurtz, Littlewood-Paley and multiplier theorems on weighted \( {L^p}\) spaces, Ph.D. Dissertation, Rutgers University, 1978. · Zbl 0436.42012
[13] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207 – 226. · Zbl 0236.26016
[14] Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249 – 258. · Zbl 0226.44007
[15] Benjamin Muckenhoupt and Richard L. Wheeden, Norm inequalities for the Littlewood-Paley function \?*_\?, Trans. Amer. Math. Soc. 191 (1974), 95 – 111. · Zbl 0289.44005
[16] B. Muckenhoupt, R. Wheeden and W.-S. Young, (to appear).
[17] Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482 – 492. · Zbl 0072.32402
[18] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[19] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159 – 172. · Zbl 0083.34301
[20] Hans Triebel, Spaces of distributions with weights. Multipliers in \?_\?-spaces with weights, Math. Nachr. 78 (1977), 339 – 355. · Zbl 0376.46020 · doi:10.1002/mana.19770780131 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.