Pisier, G. Some applications of the complex interpolation method to Banach lattices. (English) Zbl 0427.46048 J. Anal. Math. 35, 264-281 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 48 Documents MSC: 46M35 Abstract interpolation of topological vector spaces 46B42 Banach lattices Keywords:complex interpolation method; p-convex; p’-concave × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Calderón, A. P., Intermediate spaces and interpolation, the complex method, Studia Math., 24, 113-190 (1964) · Zbl 0204.13703 [2] W. B. Johnson, H. König, B. Maurey and R. Retherford,Eiqenvalues of p-summing and l_p-type operators in Banach spaces, J. Functional Analysis, to appear. · Zbl 0408.47020 [3] H. König, R. Retherford and N. Tomczak-Jaegermann,On the eigenvalues of (p, 2)-summing operators and constants associated to normed spaces, in preparation. · Zbl 0434.47033 [4] Kwapień, S., Some remarks on (p, q)-absolutely summing operators in l_p-spaces, Studia Math., 29, 327-337 (1968) · Zbl 0182.17001 [5] Kwapień, S., On operators factorizable through L_p-spaces, Bull. Soc. Math. France Mémoire, 31-32, 215-225 (1972) · Zbl 0246.47040 [6] Lewis, D., Finite dimensional subspaces of L_p, Studia Math., 63, 207-212 (1978) · Zbl 0406.46023 [7] D. Lewis and N. Tomczak-Jaegermann,Hilbertian and complemented finite dimensional subspaces of Banach lattices and unitary ideals, to appear. · Zbl 0422.46019 [8] Lindenstrauss, J.; Tzafiri, L., Classical Banach Spaces, Vol. II:Function Spaces (1979), Ergebnisse Berlin-Heidelberg-New York: Springer Verlag, Ergebnisse Berlin-Heidelberg-New York · Zbl 0403.46022 [9] Maurey, B., Un théorème de prolongement, C. R. Acad. Sci. Paris, A279, 329-332 (1974) · Zbl 0291.47001 [10] A. Pietsch,Operator Ideals, to appear. · Zbl 0399.47039 [11] N. Tomczak-Jaegermann,Finite dimensional subspaces of uniformly convex and uniformly smooth Banach lattices and trace class S_p, Studia Math., to appear. · Zbl 0456.46019 [12] Triebel, H., Zur Interpolation von Normideal in Hilbertraümen, Wiss. Z. Univ. Jena. Math. Natur. Reihe, 18, 263-267 (1969) · Zbl 0211.14903 [13] Weyl, H., Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A., 35, 408-411 (1949) · Zbl 0032.38701 · doi:10.1073/pnas.35.7.408 [14] B. Maurey,Théorèmes de factorization pour les opérateurs linéaires à valeurs dans un espace L^p, Astérisque n^o 11, Société Mathématique de France, 1974. · Zbl 0278.46028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.