×

zbMATH — the first resource for mathematics

Error estimates for the finite element solution of variational inequalities. Part II. Mixed methods. (English) Zbl 0427.65077

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, R.A.: Sobolev spaces. New York: Academic Press 1975 · Zbl 0314.46030
[2] Babuska, I., Oden, J.T., Lee, J.K.: Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems. The Texas Institute for Computational Mechanics, University of Texas at Austin, 1975
[3] Brézis, H., Kinderlehrer, D.: The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. L.23, 831-844 (1974) · Zbl 0278.49011 · doi:10.1512/iumj.1974.23.23069
[4] Brézis, H.: Nouveaux théorèmes de régularité pour les problèmes unilatéraux. Rencontre entre physiciens théoriciens et mathématiciens, Strasbourg12 (1971)
[5] Brézis, H.: Seuil de régularité pour certains problèmes unilatéraux. C. R. Acad. Sci. Paris273, 35-37 (1971) · Zbl 0214.10703
[6] Brézis, H., Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France96, 153-180 (1968) · Zbl 0165.45601
[7] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O.2, 129-151 (1974) · Zbl 0338.90047
[8] Brezzi, F., Raviart, P.A.: Mixed finite element methods for fourth order elliptic equations. In: Topics in numerical analysis, Vol. III (J.J.H. Miller, ed.). London: Academic Press 1977 · Zbl 0434.65085
[9] Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. Part I. Primal theory. Numer. Math.28, 431-443 (1977) · Zbl 0369.65030 · doi:10.1007/BF01404345
[10] Frehse, J.: Two dimensional variational problems with thin obstacles. Math. Z.143, 279-288 (1975) · Zbl 0302.49002 · doi:10.1007/BF01214380
[11] Gagliardo, E.: Proprietà di alcuni classi di funzioni in pui variablili. Ricerche Mat7, 102-137 (1958) · Zbl 0089.09401
[12] Giaquinta, M., Modica, G.: Regolarità lipschitziana per le soluzioni di alcuni problemi di minimo con vincolo. Ann. Mat. Pura Appl. (to appear) · Zbl 0325.49009
[13] Hlavá?ek, I.: Dual finite element analysis for elliptic problems with obstacles on the boundary. I. To appear
[14] Hlavá?ek, I.: Dual finite element analysis for unilateral boundary value problems. Apl. Mat.22, 14-51 (1977)
[15] Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math.21, 43-62 (1973) · Zbl 0264.65070 · doi:10.1007/BF01436186
[16] Lions, J.L.: Problémes aux limites dans les équations aux dérivées partielles. Montreal, Canada: University of Montreal Press 1965 · Zbl 0143.14003
[17] Lions, J.L.: Equations aux dérivées partielles et calcul des variations. Cours de la Faculté des Sciences de Paris, 1967
[18] Oden, J.T., Reddy, J.N.: On mixed finite element approximations. Texas Institute for Computational Mechanics, University of Texas at Austin, 1974
[19] Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Mathematical aspects of finite element methods. Lecture notes in mathematics. Vol. 606, pp. 292-315. Berlin-Heidelberg-New York: Springer 1977
[20] Stampacchia, G., Kinderlehrer, D.: Book to appear
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.