×

zbMATH — the first resource for mathematics

Some equilibrium finite element methods for two-dimensional elasticity problems. (English) Zbl 0427.73072

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian Multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 129-151 (1974)
[2] Brezzi, F., Johnson, C., Mercier, B.: Analysis of a mixed finite element method for elasto-plastic plates. Math. Comput.31, 809-817 (1977) · Zbl 0386.73074 · doi:10.1090/S0025-5718-1977-0443373-1
[3] Brezzi, F., Raviart, P.A.: Mixed finite element methods for 4th order elliptic equations. In: Topics in numerical analysis (J.J.H. Miller, ed.). London: Academic Press 1976 · Zbl 0434.65085
[4] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1977
[5] Ciavaldini, J.F., Nedelec, J.C.: Sur l’element de Fraeijs de Beubeke et Sander. Rev. Francais Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 29-45 (1974)
[6] Duvaut, G., Lions, J.L.: Les inequations en mecanique et en physique. Paris: Dunod 1972 · Zbl 0298.73001
[7] Fortin, M.: Rapport interne, Université de Montreal, 1976
[8] Fraejis de Veubeke, B.: Displacement and equilibrium models in the finite element method. In: Stress analysis (O.C. Zienkiewicz, G.S. Holister, eds.), pp. 145-197, New York: Wiley 1965
[9] Johnson, C.: On the convergence of a mixed finite element method for plate bending problems. Numer. Math.31, 43-62 (1973) · Zbl 0264.65070 · doi:10.1007/BF01436186
[10] Mercier, B.: Sur la théorie et l’analyse numérique de problèmes de plasticité. Thèse, Paris, 1977
[11] Necâs, J.: Les méthodes directes en théorie des equations elliptiques. Paris: Masson 1967
[12] Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Proceedings of the Symposium on the Mathematical Aspects of the Finite Element Methods, Rome, 1975 (to appear) · Zbl 0362.65089
[13] Thomas, J.M.: Méthode des elemént finis hybrides et mixtes pour les probl‘emes elliptiques du second ordre. Thèse, Paris, 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.