×

Review of computing methods for recirculating flows. (English) Zbl 0427.76028


MSC:

76Dxx Incompressible viscous fluids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] de Vahl Davis, G.; Mallinson, G. D., Comp. Fluids, 4, 29 (1976) · Zbl 0329.76025
[2] Tuann, S. Y.; Olson, M. D., Studies of Rectangular Cavity Flow with Reynolds Number by a Finite Element Method, UBC Civil Eng. Struc. Rept. 19 (1977), Vancouver, Canada · Zbl 0442.76031
[3] Roache, P. J., Computational Fluid Dynamics (1972), Hermosa Publishers: Hermosa Publishers New Mexico · Zbl 0251.76002
[4] Roache, P. J., Recent development and problem areas in computational fluid dynamics, (Oden, J. T., Computational Mechanics (1975), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) · Zbl 0875.76484
[5] Oden, J. T., The finite element method in fluid mechanics, (Oden, J. T.; Oliveira, E. R.A., Lectures on the Finite Element Method in Continuum Mechanics (1973), UAH Press) · Zbl 0615.73083
[6] Fortin, M., Approximation des Fonctions a Divergence Nulle par la Méthods des Élement Finis, (Proc. 3rd Int. Conf. on Num. Meth. in Fluid Mech. (1972)) · Zbl 0277.76024
[7] Temam, R.; Thomasset, F., Numerical solution of Navier-Stokes equations by a finite element method, (Proc. 2nd Int. Symp. on FEM in Flow Probs.. Proc. 2nd Int. Symp. on FEM in Flow Probs., Italy (1976)) · Zbl 0442.76026
[8] Tuann, S. Y.; Olson, M. D., Fin. Elem. in Fluids, 3 (1978), also in · Zbl 0442.76031
[9] Argyris, J. H.; Mareczek, G., Ing. Archive, 43, 92 (1974) · Zbl 0274.76028
[10] Zienkiewicz, O. C.; Godbole, P. N., Viscous incompressible flow with special reference to non-Newtonian (plastic) fluids, (Fin. Elem. in Fluids, 1 (1975), Wiley: Wiley New York) · Zbl 0271.73038
[11] Hughes, T. J.R.; Taylor, R. L.; Levy, J. F., High Reynolds number steady, incompressible flows by a finite element method, (Fin. Elem. in Fluids, 3 (1978), Wiley: Wiley New York) · Zbl 0442.76027
[12] Olson, M. D., A variational finite element method for two-dimensional steady viscous flows, (Proc. McGill-EIC Conf. on FEM in Civil Engg.. Proc. McGill-EIC Conf. on FEM in Civil Engg., Montreal (1972)) · Zbl 0316.76016
[13] Lucchi, C. W., AIAA J., 15, 887 (1977)
[14] Dorodnicyn, A. A., Review of methods for solving the Navier-Stokes equations, (Proc. 4 Int. Conf. on Num. Meth. in Fluid Mech. (1974))
[15] Donovan, L. F., AIAA. J., 8, 524 (1970) · Zbl 0218.76045
[16] S. Y. Tuann and M. D. OlsonComp. Fluids; S. Y. Tuann and M. D. OlsonComp. Fluids
[17] Bozeman, J. D.; Dalton, C., J. Computational Phys., 12, 348 (1973) · Zbl 0261.76024
[18] Thom, A.; Apelt, C. J., Field Computation in Engineering and Physics (1961), Van Nostrand: Van Nostrand London · Zbl 0122.12302
[19] Runchal, A. K.; Spalding, D. B.; Wolfshtein, M., Phys. Fluids, 12, II-21 (1969) · Zbl 0211.29403
[20] Torrance, K., J. Fluid Mech., 51, 221 (1972)
[21] Kawaguti, M., J. Phys. Soc. Japan, 16, 2307 (1961) · Zbl 0126.42403
[22] Mills, R. D., J. Roy. Aero. Soc., 69, 714 (1965)
[23] Burggraf, O. R., J. Fluid Mech., 24, 113 (1966)
[24] Runchal, A. K.; Wolfshtein, M., J. Mech. Eng. Sci., 11, 445 (1969) · Zbl 0242.76012
[25] Gosman, A. D., Heat and Mass Transfer in Recirculating Flows (1969), Academic Press: Academic Press New York
[26] Rieman, T. C.; Sabersky, R. H., J. Heat Mass Transfer, 11, 1083 (1968)
[27] Greenspan, D., Lectures on the Numerical Solutions of Linear, Singular and Nonlinear Differential Equations (1968), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J
[28] Greenspan, D., Comput. J., 12, 89 (1969)
[29] Mills, R. D., J. Roy. Aero. Soc., 69, 116 (1965)
[30] Nallasamy, M.; Prasad, K. Krishna, J. Fluid Mech., 79, 391 (1977) · Zbl 0344.76021
[31] Pan, F.; Acrivos, A., J. Fluid. Mech., 28, 643 (1967)
[32] Marshall, G.; van Spiegel, E., J. Eng. Math., 7, 173 (1973) · Zbl 0255.76027
[33] Marshall, G., (Proc. of 5th Int. Conf. on Num. Meth. in Fluid Mech. (1976))
[34] Chorin, A. J., J. Fluid Mech., 57, 785 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.