Schanuel, Stephen Hoel Heights in number fields. (English) Zbl 0428.12009 Bull. Soc. Math. Fr. 107, 433-449 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 ReviewsCited in 71 Documents MSC: 11R45 Density theorems 11N45 Asymptotic results on counting functions for algebraic and topological structures 14G05 Rational points Keywords:number of rational points Citations:Zbl 0115.387 × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] DAVENPORT (H.) . - On a principle of Lipschitz , J. London math. Soc., t. 26, 1951 , p. 179-183. MR 13,323d | Zbl 0042.27504 · Zbl 0042.27504 · doi:10.1112/jlms/s1-26.3.179 [2] HARDY (G. H.) and WRIGHT (E. M.) . - An introduction to the theory of numbers . - Oxford, Clarendon Press, 1938 . Zbl 0020.29201 | JFM 64.0093.03 · Zbl 0020.29201 [3] HECKE (H.) . - Vorlesungen über die Theorie der algebraischen Zahlen . - Leipzig, Akademische Verlagsgesellschaft, 1923 . Zbl 0041.01102 | JFM 49.0106.10 · Zbl 0041.01102 [4] LANDAU (E.) . - Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale . - Leipzig, Teubner, 1927 . JFM 53.0141.09 · JFM 53.0141.09 [5] LANG (S.) . - Diophantine geometry . - New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 11). MR 26 #119 | Zbl 0115.38701 · Zbl 0115.38701 [6] LANG (S.) . - Algebraic number theory . - Reading, Addison-Wesley publishing Company, 1970 (Addison-Wesley Series in Mathematics). MR 44 #181 | Zbl 0211.38404 · Zbl 0211.38404 [7] SCHANUEL (S.) . - On heights in number fields , Bull. Amer. math. Soc., t. 70, 1964 , p. 262-263. Article | MR 29 #91 | Zbl 0122.04202 · Zbl 0122.04202 · doi:10.1090/S0002-9904-1964-11110-1 [8] WEBER (H.) . - Lehrbuch der Algebra . Band 2. 2te Auflage. - Braunschweig, F. Vieweg, 1899 . JFM 30.0093.01 · JFM 30.0093.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.