×

zbMATH — the first resource for mathematics

Cohomologically insignificant degenerations. (English) Zbl 0428.32017

MSC:
32S30 Deformations of complex singularities; vanishing cycles
32S05 Local complex singularities
32S45 Modifications; resolution of singularities (complex-analytic aspects)
32Sxx Complex singularities
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
32C35 Analytic sheaves and cohomology groups
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] P. D : Complexe de De Rham filtré d’une variété singulière . Preprint, Université de Nantes 1979.
[2] P. Deligne : Théorie de Hodge II . Publ. Math. IHES 40 (1971) 5-58. · Zbl 0219.14007 · doi:10.1007/BF02684692 · numdam:PMIHES_1971__40__5_0 · eudml:103914
[3] P. Deligne : Théorie de Hodge III . Publ. Math. IHES 44 (1975) 5-77. · Zbl 0237.14003 · doi:10.1007/BF02685881 · numdam:PMIHES_1974__44__5_0 · eudml:103935
[4] I. Dolgachev : Cohomologically insignificant degenerations of algebraic varieties . Compositio Math. 42 (1981) 279-313. · Zbl 0466.14003 · numdam:CM_1980__42_3_279_0 · eudml:89480
[5] W. Schmid : Variations of Hodge structures: the singularities of the period mapping . Inventiones Math. 22 (1973) 211-330. · Zbl 0278.14003 · doi:10.1007/BF01389674 · eudml:142246
[6] J. Shah : Insignificant limit singularities and their mixed Hodge structure . Annals of Math. 109 (1979) 497-536. · Zbl 0414.14022 · doi:10.2307/1971223
[7] J.H.M. Steenbrink : Limits of Hodge structures . Inventiones Math. 31 (1976) 229-257. · Zbl 0303.14002 · doi:10.1007/BF01403146 · eudml:142362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.