×

A remarkable homogeneous Banach algebra. (English) Zbl 0428.46035


MSC:

46H30 Functional calculus in topological algebras
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
46J10 Banach algebras of continuous functions, function algebras
42A24 Summability and absolute summability of Fourier and trigonometric series
43A85 Harmonic analysis on homogeneous spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. Chevet,Un résultat sur les mesures gaussiennes, C. R. Acad. Sci. ParisA284 (1977), 441–444. · Zbl 0362.28007
[2] X. Fernique,Régularité des trajectoires des fonctions aléatoires gaussiennes, Springer Lecture Notes480, 1975. · Zbl 0331.60025
[3] N. Jain and M. Marcus,Continuity of sub-Gaussian processes. Probability on Banach spaces, Advances in Probability and Related Topics4 (1978), 81–196.
[4] J. P. Kahane,Some random series of functions, h.m.m. Lexington Press, 1968. · Zbl 0192.53801
[5] Y. Katznelson,A characterization of all continuous functions on a compact Hausdorff space, Bull. Amer. Math. Soc.66 (1960), 313–315. · Zbl 0099.10202
[6] M. Marcus and L. Shepp,Sample behavior of Gaussian processes, Proc. Sixth Berkeley Symposium, 1970. · Zbl 0209.49201
[7] M. Marcus and G. Pisier,Random Fourier series with applications to harmonic analysis, to appear. · Zbl 0474.43004
[8] G. Pisier,Sur l’espace de Banach des séries de Fourier aléatoires presque sûrement continues, Exposé 17–18, Séminaire sur la Géométrie des Espaces de Banach, Ecole Polytechnique, Palaiseau, 1977–78.
[9] M. Zafran,The dichotomy problem for homogeneous Banach algebras, Ann. Math.108 (1978), 97–105. · Zbl 0388.46036
[10] M. Zafran,On the symbolic calculus in homogeneous Banach algebras, Israel J. Math.32 (1979), 183–192. · Zbl 0396.46048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.