×

zbMATH — the first resource for mathematics

Weyl numbers and eigenvalues of operators in Banach spaces. (English) Zbl 0428.47027

MSC:
47L10 Algebras of operators on Banach spaces and other topological linear spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bauhardt, W.: Hilbert-Zahlen von Operatoren in Banachräumen. Math. Nachr.79, 181-187 (1977) · Zbl 0364.46052
[2] Bennett, G.: Inclusion mappings betweenl p -spaces. J. Functional Analysis13, 20-27 (1973) · Zbl 0255.47033
[3] Bergh, J., Löfström, J.: Interpolation spaces. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0344.46071
[4] Carl, B.: Absolut (p, 1)-summierende Operatoren vonl u nachl v . Math. Nachr.63, 353-360 (1974) · Zbl 0292.47019
[5] Carl, B.: Inequalities between absolutely (p, 1)-summing norms. Studia Math. (to appear) · Zbl 0468.47012
[6] Horn, A.: On the singular values of a product of completely continuous operators. Proc. Nat. Acad. Sci. USA36, 374-375 (1950) · Zbl 0038.07201
[7] Johnson, W.B., König, H., Maurey, B., Retherford, J.R.: Eigenvalues ofp-summing andl p -type operators in Banach spaces. J. Functional Analysis32, 353-380 (1979) · Zbl 0408.47019
[8] König, H.:s-Zahlen und Eigenwerte von Operatoren in Banachräumen. Thesis, Bonn 1977
[9] König, H.: Interpolation of operator ideals with an application to eigenvalue distribution problems. Math. Ann.233, 35-48 (1978) · Zbl 0364.47011
[10] König, H.: On the spectrum of products of operator ideals. Math. Nachr.93 (1980)
[11] König, H.: Generalized Weyl-type inequalities for operators in Banach spaces. (preprint)
[12] König, H., Retherford, J.R., Tomczak-Jaegermann, N.: On the eigenvalues of (p, 2)-summing operators and constants associated to normed spaces. J. Functional Analysis (to appear) · Zbl 0434.47033
[13] Lewis, D.R.: Finite dimensional subspaces ofL p . Studia Math.63, 207-212 (1978) · Zbl 0406.46023
[14] Lewis, D.R.: The dimension of complemented hilbertian subspaces of uniformly convex Banach lattices. (preprint) · Zbl 0531.46017
[15] Maurey, B., Pe?czy?ski, A.: A criterion for composition of (p, 1)-absolutely summing operators to be compact. Studia Math.54, 291-300 (1976) · Zbl 0321.47016
[16] Miyazaki, K.: (p, q, r)-absolutely summing operators. J. Math. Soc. Japan24, 341-354 (1972) · Zbl 0232.40014
[17] Peetre, J., Sparr, G.: Interpolation of normed Abelian groups. Ann. Mat. Pura Appl.42, 217-262 (1972) · Zbl 0237.46039
[18] Pietsch, A.: Operator ideals. Berlin: Verlag der Wissenschaften and North-Holland 1978/1980
[19] Pietsch, A.:s-Numbers and eigenvalues of operators in Banach spaces (Russian). Doklady Akad. Nauk SSSR247, 1053-1056 (1979)
[20] Pietsch, A.: Eigenvalues of integral operators (Russian). Doklady Akad. Nauk SSSR247, 1324-1327 (1979)
[21] Pietsch, A.: Eigenvalues of integral operators. Math. Ann.247, 169-178 (1980) · Zbl 0428.47028
[22] Pietsch, A.: Approximation spaces (preprint) · Zbl 0489.47008
[23] Pietsch, A.: Über die Verteilung von Fourierkoeffizienten und Eigenwerten. Wiss. Z. Univ. Jena,29 (1980) · Zbl 0435.47028
[24] Triebel, H.: Interpolation theory, function spaces, differential operators. Berlin: Verlag der Wissenschaften and North-Holland 1978 · Zbl 0387.46032
[25] Triebel, H.: Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov Räumen. Invent. Math.4, 275-293 (1967) · Zbl 0165.14501
[26] Weyl, H.: Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. USA35, 408-411 (1949) · Zbl 0032.38701
[27] Third Polish-GDR Seminar on Operator Ideals and Geometry of Banach Spaces ? Open Problems. Math. Nachr.95 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.