zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. (English) Zbl 0428.47039

47J25Iterative procedures (nonlinear operator equations)
47H06Accretive operators, dissipative operators, etc. (nonlinear)
Full Text: DOI
[1] Baillon, J. B.: Thèse. (1978)
[2] J. B. Baillon and P. L. Lions, Convergence de suites de contractions dans un espace de Hilbert, preprint.
[3] Brézis, H.; Lions, P. L.: Produits infinis de résolvantes. Israel J. Math. 29, 329-345 (1978) · Zbl 0387.47038
[4] Browder, F. E.: On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. nat. Acad. sci. USA 56, 419-425 (1966) · Zbl 0143.36902
[5] Browder, F. E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. nat. Acad. sci. USA 56, 1080-1086 (1966) · Zbl 0148.13502
[6] Jr., R. E. Bruck: An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bull. amer. Math. soc. 81, 890-892 (1975) · Zbl 0332.49005
[7] Jr., R. E. Bruck: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. math. Anal. appl. 61, 159-164 (1977) · Zbl 0423.47023
[8] Passty, G. B.: Asymptotic behavior of an implicit differencing scheme associated with accretive operators in Banach spaces. Ph. D. Dissertation (1978)
[9] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control and optimization 14, 877-898 (1976) · Zbl 0358.90053