×

zbMATH — the first resource for mathematics

Riemannian geometry as determined by the volumes of small geodesic balls. (English) Zbl 0428.53017

MSC:
53C20 Global Riemannian geometry, including pinching
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alekseevskij, D. V., On holonomy groups of Riemannian manifolds.Ukrain. Math. Z., 19 (1967), 100–104.
[2] Allendoerfer, C. B., Steiner’s formula on a generalS n+1.Bull. Amer. Math. Soc., 54 (1948), 128–135. · Zbl 0033.39503 · doi:10.1090/S0002-9904-1948-08966-2
[3] Berger, M., Sur les variétés d’Einstein compactes.C.R. III e Réunion Math. Expression Latine, Namur, (1965), 35–55.
[4] –, Le spectre des variétés riemanniennes.Rev. Roumaine Math. Pures Appl., 23 (1968), 915–931. · Zbl 0181.49603
[5] Berger, M., Gauduchon, P. &Mazet, E.,Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, vol. 194, Springer-Verlag, Berlin and New York, 1971. · Zbl 0223.53034
[6] Bertrand, J., Diguet &Puiseux, V., Démonstration d’un théorème de Gauss.Journal de Mathématiques, 13 (1848), 80–90.
[7] Besse, Arthur L.,Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik, vol. 93, Springer-Verlag, Berlin and New York, 1978. · Zbl 0387.53010
[8] Borel, A., On the curvature operator of the Hermitian symmetric manifolds.Ann. of Math., 71 (1960), 508–521. · Zbl 0100.36101 · doi:10.2307/1969940
[9] Brown, R. B. &Gray, A., Manifolds whose holonomy group is a subgroup of Spin (9).Differential Geometry (in honor of K. Yano). Kinokuniya, Tokyo, 1972, 41–59.
[10] Calabi, E. &Vesentini, E., On compact locally symmetric Kähler manifolds.Ann. of Math., 71 (1960), 472–507. · Zbl 0100.36002 · doi:10.2307/1969939
[11] Dessertine, J. C., Expressions nouvelles de la formule de Gauss-Bonnet en dimension 4 et 6.C.R. Acad. Sci. Paris Sér. A, 273 (1971), 164–167. · Zbl 0218.53085
[12] Donelly, H., Symmetric Einstein spaces and spectral geometry.Indiana Univ. Math. J., 24 (1974), 603–606. · Zbl 0299.53033 · doi:10.1512/iumj.1974.24.24045
[13] –, Topology and Einstein Kaehler metrics.J. Differential Geometry, 11, (1976), 259–264. · Zbl 0332.32004
[14] Eisenhart, L. P.,A treatise on the differential geometry of curves and surfaces. Ginn, 1909. · JFM 40.0657.01
[15] Erbacher, J., Riemannian manifolds of constant curvature and the growth function of submanifolds.Michigan Math. J., 19 (1972) 215–223. · Zbl 0237.53038 · doi:10.1307/mmj/1029000894
[16] Gauss, C. F., Disquisitiones generales circa superficies curvas.C. F. Gauss Werke Band IV, Georg Olm Verlag, Hildesheim, 1973, 219–258.
[17] Gilkey, P., The spectral geometry of a Riemannian manifold.J. Differential Geometry, 10 (1975), 601–618. · Zbl 0316.53035
[18] –, Local invariants of the Riemannian metric for two-dimensional manifolds.Indiana Univ. Math. J., 23 (1974), 855–882. · Zbl 0272.53014 · doi:10.1512/iumj.1974.23.23071
[19] Gray, A., Invariants of curvature operators of four-dimensional Riemannian manifolds.Canadian Math. Congress Proc. of the 13th Biennial Seminar (1971), vol. 2, 42–65.
[20] –, The volume of a small geodesic ball of a Riemannian manifold.Michigan Math. J., 20 (1973), 329–344. · Zbl 0279.58003
[21] –, Geodesic balls in Riemannian product manifolds.Differential Geometry and Relativity (in honor of A. Lichnerowicz), Reidel Publ. Co., Dordrecht, 1976, 63–66.
[22] –, Weak holonomy groups.Math. Z., 123 (1971), 290–300. · Zbl 0222.53043 · doi:10.1007/BF01109983
[23] –, Some relations between curvature and characteristic classes.Math. Ann., 184 (1970), 257–267. · Zbl 0183.50502 · doi:10.1007/BF01350854
[24] –, A generalization of F. Schur’s theorem.J. Math. Soc. Japan, 21 (1969), 454–457. · Zbl 0179.26903 · doi:10.2969/jmsj/02130454
[25] –, Pseudo-Riemannian almost product manifolds and submersionsJ. Math. Mech., 16 (1967), 715–738. · Zbl 0147.21201
[26] Grossman, N., On characterization of Riemannian manifolds by growth of tubular neighborhoods.Proc. Amer. Math. Soc., 32 (1972), 556–560. · Zbl 0241.53030 · doi:10.1090/S0002-9939-1972-0296855-7
[27] Günther, P., Einige Sätze über das Volumenelement eines Riemannschen Raumes.Publ. Math. Debrecen, 7 (1960), 78–93. · Zbl 0097.37304
[28] Holzsager, R. A., Riemannian manifolds of finite order.Bull. Amer. Math. Soc., 78 (1972), 200–201. · Zbl 0229.53028 · doi:10.1090/S0002-9904-1972-12914-8
[29] –, A characterization of Riemannian manifolds of constant curvature.J. Differential Geometry, 8 (1973), 103–106. · Zbl 0279.53053
[30] Holzsager, R. A. &Wu, H., A characterization of two-dimensional Riemannian manifolds of constant curvature.Michigan Math. J., 17 (1970), 297–299. · Zbl 0203.24302 · doi:10.1307/mmj/1029000515
[31] Hotelling, H., Tubes and spheres inn-spaces, and a class of statistical problems.Amer. J. Math., 61 (1939), 440–460. · Zbl 0020.38302 · doi:10.2307/2371512
[32] Liouville, J., Sur un théorème de M. Gauss concernant le produit des deux rayons de courbure principaux en chaque point d’une surface.Journal de Mathématiques, 12 (1847), 291–304.
[33] Sakai, T., On eigen-values of Laplacian and curvature of Riemannian manifolds.Tôhoku Math. J., 23, (1971), 589–603. · Zbl 0237.53040 · doi:10.2748/tmj/1178242547
[34] Singer, I. M. &Thorpe, J. A., The curvature of 4-dimensional Einstein spaces.Global Analysis (papers in honor of K. Kodaira), Univ. of Tokyo Press, Tokyo, 1969, 355–365.
[35] Vermeil, H., Notiz über das mittlere Krümmungsmass einern-fach ausgedehnten Riemann’sche Mannigfaltigkeit.Akad. Wiss. Göttingen Nachr., (1917), 334–344.
[36] Watanabe, Y., On the characteristic functions of harmonic quaternion Kählerian spaces.Ködai Math. Sem. Rep., 27 (1976), 410–420. · Zbl 0336.53019 · doi:10.2996/kmj/1138847322
[37] Weyl, H., On the volume of tubes.Amer. J. Math., 61 (1939), 461–472. · JFM 65.0796.01 · doi:10.2307/2371513
[38] Wu, H., A characteristic property of the Euclidean plane.Michigan Math. J., 16 (1969), 141–148. · Zbl 0175.48704 · doi:10.1307/mmj/1029000215
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.