Perturbation of mixed variational problems. Application to mixed finite element methods. (English) Zbl 0428.65059


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49J20 Existence theories for optimal control problems involving partial differential equations
35B20 Perturbations in context of PDEs
Full Text: DOI EuDML Link


[1] 1 J P AUBIN, Approximation of Elliptic Boundary Value Problems, Wiley, N Y , 1972 Zbl0248.65063 MR478662 · Zbl 0248.65063
[2] 2 I BABUSKA, The Finite Element Method with Lagraman Multipliers, Num Math ,Vol 20, 1973, pp 179-192 Zbl0258.65108 MR359352 · Zbl 0258.65108 · doi:10.1007/BF01436561
[3] 3 I BABUSKA, The Finite Element Method with Penalty, Math Comp , Vol 27, 1973, pp 221-228 Zbl0299.65057 MR351118 · Zbl 0299.65057 · doi:10.2307/2005611
[4] 4 M BERCOVIER, A Family of Fini te Eléments with Penahzation for the NumencalSolution ofStokes and Navier-Stokes Equations, m Proc I F I P Conf 1977,North-Holland, Amsterdam, 1977 Zbl0383.65065 MR483540 · Zbl 0383.65065
[5] 5 M BERCOVIER, On the Penalty and Extrapolation Method (to appear) · Zbl 0486.73070
[6] 5 bis. M BERCOVIER, Thèse de Doctorat d’État, Rouen, 1976
[7] 6 M BERCOVIER, and M ENGELMANA Finite Element for the Numencal Solution ofViscous Incompressible flous (to appear m J Comp Phys ) Zbl0395.76040 · Zbl 0395.76040 · doi:10.1016/0021-9991(79)90098-6
[8] 7 M BERCOVIER and F LIVNFA 4 CSTQuadïilateial Element for Incompressible andNeculIncompressible Mateuals (to appear in CALCOLO) Zbl0418.73009 · Zbl 0418.73009 · doi:10.1007/BF02575759
[9] 8 F BREZZIOn the Existence, Uniqueness and Approximation of saddle Point ProblemsAnsing jiom Lagrangian Multipliers, R A I R O Vol 8 R-2 1974 pp 129-151 Zbl0338.90047 MR365287 · Zbl 0338.90047
[10] 9 F BREZZI and P A RAVIART, Mixed Finite Element Methods jor Ath OrderElhptic Equations, Topics m Numencal Analysis, Vol III, J J H MILLER Ed , Academic Press
[11] 10 P G CIARLET, Numencal Analysis oj the Finite Element Method for Elliptic BoundaryValue Problems, North Holland, Amsterdam, 1977 MR1115235
[12] 11 A J CHORIN, A Numencal Method for Solving Incompressible Problems, J CompPhys , Vol 2, 1967 Zbl0149.44802 · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[13] 12 M CROUZEIX and P A RAVIART, Conforming and non Conforming Finite ElémentsMethods for Solving the Statwnary Stokes Equation R A I R O, Vol 7, R-3, 1973, pp 33-76 Zbl0302.65087 MR343661 · Zbl 0302.65087
[14] 13 G DUVAUT and J L LIONS, Les inéquations en mécanique et en physique, Dunod,Pans, 1972 Zbl0298.73001 MR464857 · Zbl 0298.73001
[15] 14 I EKELAND and R TEMAM, Analyse convexe et problèmes vanationnels , Dunod, Pans, 1974 Zbl0281.49001 · Zbl 0281.49001
[16] 15 M FORTIN, Thèse de Doctorat d’État, Pans, 1972
[17] 15 bis. M FORTIN, An Analysis of the Convergence of Mixed Finite Element Methods, R A I R O , Vol 11, R-3, 1977, pp 341-354 Zbl0373.65055 MR464543 · Zbl 0373.65055
[18] 16 L R HERRMANNElastuttx Equations for Incompressible or Nearly IncompressibleMaterials by a Vanational Theorem A I A A Journal, Vol 3, 1965, pp 1896-1900 MR184477
[19] 17 P A RAVIART and J M THOMAS, A Mixed Finite Element Method for 2nd OrderElliptic Problems, in Proc Symp on the Mathematical aspects oj the FEM Rome,December 1975, Lecture notes m Mathematics 606, Springer Verlag, pp 292-315 Zbl0362.65089 MR483555 · Zbl 0362.65089
[20] 18 R TEMAM, Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull Soc Math Fr , Vol 96, 1968 Zbl0181.18903 MR237972 · Zbl 0181.18903
[21] 19 R TEMAN, Navier-Stokes équations, North Holland, Amsterdam, 1977 Zbl0383.35057 · Zbl 0383.35057
[22] 20 J M THOMAS, Thèse de Doctorat d’État, Pans, 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.