A note on the stack size of regularly distributed binary trees. (English) Zbl 0428.68076


68R10 Graph theory (including graph drawing) in computer science
68R99 Discrete mathematics in relation to computer science
Full Text: DOI


[1] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, Dover Publications, INC, New York, 1970. · Zbl 0171.38503
[2] T. M. Apostol,Introduction to Analytic Number Theory, Springer Verlag, New York, 1976. · Zbl 0335.10001
[3] L. Carlitz, D. P. Roselle and R. A. Scoville,Some remarks on ballot-type sequences of positive integers, J. Comb. Theory, Ser. A. 11 (1971), 258–271. · Zbl 0227.05007 · doi:10.1016/0097-3165(71)90053-7
[4] N. G. deBruijn, D. E. Knuth and S. O. Rice,The Average Height of Planted Plane Trees, R. C. Read (Ed.), Graph Theory and Computing, New York, London, Ac. Press (1972), 15–22.
[5] R. Kemp,On The Average Stack Size of Regularly Distributed Binary Trees, H. A. Maurer (Ed.), Lect. Notes in Comp. Sci. 71 (1979), 340–355. · Zbl 0415.05019 · doi:10.1007/3-540-09510-1_28
[6] D. E. Knuth,The Art of Computer Programming, Vol. 1, 2nd ed., Addison-Wesley, Reading, 1973. · Zbl 0302.68010
[7] G. Kreweras,Sur les éventails de segments, Cahiers du B.U.R.O. 15, Paris, (1970), 1–41.
[8] J. Riordan,Combinatorial Identities, Wiley, New York, 1968. · Zbl 0194.00502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.