Division values in local fields. (English) Zbl 0429.12010


11S31 Class field theory; \(p\)-adic formal groups
14L05 Formal groups, \(p\)-divisible groups
Full Text: DOI EuDML


[1] [C] Coates, J., Wiles, A.: Onp-adicL-functions and Elliptic Units. Journal Australian Math. Soc., A,25, 1-25 (1978) · Zbl 0442.12007 · doi:10.1017/S1446788700011459
[2] [F] Fontaine, J.M.: Corps de Séries Formelles et Extensions Galoisiennes des Corps Locaux, Séminaire de Théorie des Nombres de Grenoble, 28-38 (1971-72)
[3] [Fr] Fröhlich, A.: Formal Groups, Lecture Notes in Mathematics, No. 74. Berlin: Springer-Verlag 1968 · Zbl 0177.04801
[4] [I1] Iwasawa, K.: Explicit Formulas for the Norm Residue Symbol. Jour. Math. Soc. Japan20, 151-164 (1964) · Zbl 0256.12013 · doi:10.2969/jmsj/02010151
[5] [I2] Iwasawa, K.: On Some Modules in the Theory of Cyclotomic Fields. Jour. Math. Soc. Japan20, 42-82 (1964) · Zbl 0125.29207 · doi:10.2969/jmsj/01610042
[6] [L] Lubin, J., Tate, J.: Formal Complex Multiplication in Local Fields. Ann. of Math.81, 380-387 (1965) · Zbl 0128.26501 · doi:10.2307/1970622
[7] [W] Wiles, A.: Higher Explicit Reciprocity Laws. Ann. of Math.107, 235-254 (1978) · Zbl 0378.12006 · doi:10.2307/1971143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.